XXTEA 加密算法的 JavaScript 和 PHP 实现
本文转自 http://www.coolcode.org/?action=show&id=128 感谢原创作者:andot
微型加密算法(TEA)及其相关变种(XTEA,Block TEA,XXTEA) 都是分组加密算法,它们很容易被描述,实现也很简单(典型的几行代码)。
TEA 算法最初是由剑桥计算机实验室的 David Wheeler 和 Roger Needham 在 1994 年设计的。该算法使用 128 位的密钥为 64 位的信息块进行加密,它需要进行 64 轮迭代,尽管作者认为 32 轮已经足够了。该算法使用了一个神秘常数δ作为倍数,它来源于黄金比率,以保证每一轮加密都不相同。但δ的精确值似乎并不重要,这里 TEA 把它定义为 δ=「(√5 - 1)231」(也就是程序中的 0×9E3779B9)。
之后 TEA 算法被发现存在缺陷,作为回应,设计者提出了一个 TEA 的升级版本——XTEA(有时也被称为“tean”)。XTEA 跟 TEA 使用了相同的简单运算,但它采用了截然不同的顺序,为了阻止密钥表攻击,四个子密钥(在加密过程中,原 128 位的密钥被拆分为 4 个 32 位的子密钥)采用了一种不太正规的方式进行混合,但速度更慢了。
在跟描述 XTEA 算法的同一份报告中,还介绍了另外一种被称为 Block TEA 算法的变种,它可以对 32 位大小任意倍数的变量块进行操作。该算法将 XTEA 轮循函数依次应用于块中的每个字,并且将它附加于它的邻字。该操作重复多少轮依赖于块的大小,但至少需要 6 轮。该方法的优势在于它无需操作模式(CBC,OFB,CFB 等),密钥可直接用于信息。对于长的信息它可能比 XTEA 更有效率。
在 1998 年,Markku-Juhani Saarinen 给出了一个可有效攻击 Block TEA 算法的代码,但之后很快 David J. Wheeler 和 Roger M. Needham 就给出了 Block TEA 算法的修订版,这个算法被称为 XXTEA。XXTEA 使用跟 Block TEA 相似的结构,但在处理块中每个字时利用了相邻字。它利用一个更复杂的 MX 函数代替了 XTEA 轮循函数,MX 使用 2 个输入量。
XXTEA 算法很安全,而且非常快速,非常适合应用于 Web 开发中。但目前似乎很少有人将该算法用于实际开发中。甚至国内尚无介绍该算法的文章(至少在 Google 上搜索不到这方面的中文文章,关于密码学算法的书中也未见提及)。我在 Google 上搜索到了几个国外的 XXTEA 算法的实现(见参考文献),但基本上都是 JavaScript 的,但这些 JavaScript 实现也有一些问题,如果加密字符串长度不是 4 的整数倍,则这些实现的在加密后无法真正还原,还原以后的字符串实际上与原字符串不相等,而是后面多了一些 /0 的字符,或者少了一些 /0 的字符。
原因在于 XXTEA 算法只定义了如何对 32 位的信息块数组(实际上是 32 位无符号整数数组)进行加密,而并没有定义如何来将字符串编码为这种数组。而现有的实现中在将字符串编码为整数数组时,都丢失了字符串长度信息,因此还原出现了问题。另外单纯的 JavaScript 是没有意义的,因为单纯的客户端加密解密是不能有效保证信息的安全性的。因此我写了这个 JavaScript 和 PHP 实现,这两种实现在字符串编码上采用的算法是一致的,因此 JavaScript 加密的内容可以用 PHP 实现的解密算法进行解密,反之亦然。
注意:如果需要在 JavaScript 中加密解密带有汉字的信息, 在加密时,需要先将带加密信息用 utf16to8 进行转换,解密时,需要将解密后的内容再用 utf8to16 还原。如果要在 PHP 和 JavaScript 之间传递带有汉字的加密信息,原信息需要用 UTF-8 字符集。
JavaScript 版本的演示程序:http://test.coolcode.cn/xxtea/
JavaScript 实现代码
- /* XXTEA encryption arithmetic library.
- *
- * Copyright (C) 2006 Ma Bingyao <andot@ujn.edu.cn>
- * Version: 1.5
- * LastModified: Dec 9, 2006
- * This library is free. You can redistribute it and/or modify it.
- */
- function long2str(v, w) {
- var vl = v.length;
- var n = (vl - 1) << 2;
- if (w) {
- var m = v[vl - 1];
- if ((m < n - 3) || (m > n)) return null;
- n = m;
- }
- for (var i = 0; i < vl; i++) {
- v[i] = String.fromCharCode(v[i] & 0xff,
- v[i] >>> 8 & 0xff,
- v[i] >>> 16 & 0xff,
- v[i] >>> 24 & 0xff);
- }
- if (w) {
- return v.join('').substring(0, n);
- }
- else {
- return v.join('');
- }
- }
- function str2long(s, w) {
- var len = s.length;
- var v = [];
- for (var i = 0; i < len; i += 4) {
- v[i >> 2] = s.charCodeAt(i)
- | s.charCodeAt(i + 1) << 8
- | s.charCodeAt(i + 2) << 16
- | s.charCodeAt(i + 3) << 24;
- }
- if (w) {
- v[v.length] = len;
- }
- return v;
- }
- function xxtea_encrypt(str, key) {
- if (str == "") {
- return "";
- }
- var v = str2long(str, true);
- var k = str2long(key, false);
- if (k.length < 4) {
- k.length = 4;
- }
- var n = v.length - 1;
- var z = v[n], y = v[0], delta = 0x9E3779B9;
- var mx, e, p, q = Math.floor(6 + 52 / (n + 1)), sum = 0;
- while (0 < q--) {
- sum = sum + delta & 0xffffffff;
- e = sum >>> 2 & 3;
- for (p = 0; p < n; p++) {
- y = v[p + 1];
- mx = (z >>> 5 ^ y << 2) + (y >>> 3 ^ z << 4) ^ (sum ^ y) + (k[p & 3 ^ e] ^ z);
- z = v[p] = v[p] + mx & 0xffffffff;
- }
- y = v[0];
- mx = (z >>> 5 ^ y << 2) + (y >>> 3 ^ z << 4) ^ (sum ^ y) + (k[p & 3 ^ e] ^ z);
- z = v[n] = v[n] + mx & 0xffffffff;
- }
- return long2str(v, false);
- }
- function xxtea_decrypt(str, key) {
- if (str == "") {
- return "";
- }
- var v = str2long(str, false);
- var k = str2long(key, false);
- if (k.length < 4) {
- k.length = 4;
- }
- var n = v.length - 1;
- var z = v[n - 1], y = v[0], delta = 0x9E3779B9;
- var mx, e, p, q = Math.floor(6 + 52 / (n + 1)), sum = q * delta & 0xffffffff;
- while (sum != 0) {
- e = sum >>> 2 & 3;
- for (p = n; p > 0; p--) {
- z = v[p - 1];
- mx = (z >>> 5 ^ y << 2) + (y >>> 3 ^ z << 4) ^ (sum ^ y) + (k[p & 3 ^ e] ^ z);
- y = v[p] = v[p] - mx & 0xffffffff;
- }
- z = v[n];
- mx = (z >>> 5 ^ y << 2) + (y >>> 3 ^ z << 4) ^ (sum ^ y) + (k[p & 3 ^ e] ^ z);
- y = v[0] = v[0] - mx & 0xffffffff;
- sum = sum - delta & 0xffffffff;
- }
- return long2str(v, true);
- }
PHP 实现代码
- <?php
- /* XXTEA encryption arithmetic library.
- *
- * Copyright (C) 2006 Ma Bingyao <andot@ujn.edu.cn>
- * Version: 1.5
- * LastModified: Dec 5, 2006
- * This library is free. You can redistribute it and/or modify it.
- */
- function long2str($v, $w) {
- $len = count($v);
- $n = ($len - 1) << 2;
- if ($w) {
- $m = $v[$len - 1];
- if (($m < $n - 3) || ($m > $n)) return false;
- $n = $m;
- }
- $s = array();
- for ($i = 0; $i < $len; $i++) {
- $s[$i] = pack("V", $v[$i]);
- }
- if ($w) {
- return substr(join('', $s), 0, $n);
- }
- else {
- return join('', $s);
- }
- }
- function str2long($s, $w) {
- $v = unpack("V*", $s. str_repeat("/0", (4 - strlen($s) % 4) & 3));
- $v = array_values($v);
- if ($w) {
- $v[count($v)] = strlen($s);
- }
- return $v;
- }
- function int32($n) {
- while ($n >= 2147483648) $n -= 4294967296;
- while ($n <= -2147483649) $n += 4294967296;
- return (int)$n;
- }
- function xxtea_encrypt($str, $key) {
- if ($str == "") {
- return "";
- }
- $v = str2long($str, true);
- $k = str2long($key, false);
- if (count($k) < 4) {
- for ($i = count($k); $i < 4; $i++) {
- $k[$i] = 0;
- }
- }
- $n = count($v) - 1;
- $z = $v[$n];
- $y = $v[0];
- $delta = 0x9E3779B9;
- $q = floor(6 + 52 / ($n + 1));
- $sum = 0;
- while (0 < $q--) {
- $sum = int32($sum + $delta);
- $e = $sum >> 2 & 3;
- for ($p = 0; $p < $n; $p++) {
- $y = $v[$p + 1];
- $mx = int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z));
- $z = $v[$p] = int32($v[$p] + $mx);
- }
- $y = $v[0];
- $mx = int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z));
- $z = $v[$n] = int32($v[$n] + $mx);
- }
- return long2str($v, false);
- }
- function xxtea_decrypt($str, $key) {
- if ($str == "") {
- return "";
- }
- $v = str2long($str, false);
- $k = str2long($key, false);
- if (count($k) < 4) {
- for ($i = count($k); $i < 4; $i++) {
- $k[$i] = 0;
- }
- }
- $n = count($v) - 1;
- $z = $v[$n];
- $y = $v[0];
- $delta = 0x9E3779B9;
- $q = floor(6 + 52 / ($n + 1));
- $sum = int32($q * $delta);
- while ($sum != 0) {
- $e = $sum >> 2 & 3;
- for ($p = $n; $p > 0; $p--) {
- $z = $v[$p - 1];
- $mx = int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z));
- $y = $v[$p] = int32($v[$p] - $mx);
- }
- $z = $v[$n];
- $mx = int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z));
- $y = $v[0] = int32($v[0] - $mx);
- $sum = int32($sum - $delta);
- }
- return long2str($v, true);
- }
- ?>