MIT算法导论公开课之第19课 最短路径算法、点的最短路径

单源点最短路径问题回顾

1.未加权(或所有权值都相等)的图,使用BFS算法,时间为O(V+E)。
2.无负权值边的图,使用Dijkstra算法,时间为O(E+V·lgV)。
3.一般情况的图,使用Bellman-Ford算法,时间为O(V·E)。
4.DAG(有向无环图),使用拓扑排序来得到顶点的顺序,运行一次Bellman-Ford算法,时间为O(V+E)。

全对(All-pairs)最短路径问题

计算任意两个顶点之间的最短路径。
直接思路:
    1.未加权(或所有权值都相等)的图,使用|V|次BFS算法,时间为O(V·E)。
    2.无负权值边的图,使用|V|次Dijkstra算法,时间为O(V·E+V^2·lgV)。
    3.一般情况的图,使用|V|次Bellman-Ford算法,时间为O(V^2·E)。
1和2的运行时间还是不错的,但3的直接思路算法时间复杂度很高,需要优化。

全对最短路径问题抽象

输入:
    有向图G=(V,E),V={1,2,…,n},且有一个加权函数为每一条边赋予一个实数的权值。
输出:
    n x n的矩阵,矩阵的每个值为最短路径的权值和δ(i,j)(i,j∈V)。

稠密图情况分析

使用|V|次Bellman-Ford算法,时间为O(V^2·E),而稠密图的|E|=O(V^2),所以使用这种解法时间为O(V^4),复杂度很高,需要改进,本节课将会讲3种改进算法。

动态规划(第1种改进算法)

动态规划

Floyd-Warshall算法(第2种改进算法)

Floyd-Warshall算法

传递闭包

对于一个有向图:
有向图
使用|V|次BFS求单源点最短路径的算法,如果权值为∞,则是0,其他情况则为1(O(V·E))。

Johnson算法

Johnson算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值