第三届蓝桥杯省赛C++组 夺冠概率

夺冠概率

足球比赛具有一定程度的偶然性,弱队也有战胜强队的可能。

假设有甲、乙、丙、丁四个球队。根据他们过去比赛的成绩,得出每个队与另一个队对阵时取胜的概率表:

    甲  乙  丙  丁  
甲   -  0.1 0.3 0.5
乙 0.9  -   0.7 0.4
丙 0.7  0.3 -   0.2
丁 0.5  0.6 0.8 -

数据含义:甲对乙的取胜概率为0.1,丙对乙的胜率为0.3,...

现在要举行一次锦标赛。双方抽签,分两个组比,获胜的两个队再争夺冠军。(参见【1.jpg】)

请你进行10万次模拟,计算出甲队夺冠的概率。

注意:

请仔细调试!您的程序只有能运行出正确结果的时候才有机会得分!
在评卷时使用的输入数据与试卷中给出的实例数据可能是不同的。

请把所有函数写在同一个文件中,调试好后,存入与【考生文件夹】下对应题号的“解答.txt”中即可。
相关的工程文件不要拷入。
源代码中不能能使用诸如绘图、Win32API、中断调用、硬件操作或与操作系统相关的API。
允许使用STL类库,但不能使用MFC或ATL等非ANSI c++标准的类库。例如,不能使用CString类型(属于MFC类库)。

 

思路:甲要夺冠有三种可能:甲赢乙,然后甲赢丙丁当中赢的那个;甲赢丙,然后甲赢乙丁当中赢的那个;甲赢丁,然后甲赢乙丙当中赢的那个。可以用一个数组把上面的概率表存下来,然后再用一个数组记录下甲夺冠的三种情况的概率,再然后就是用rand函数了。

代码:

#include <stdio.h>
#include <time.h>
int main()
{
	int i,j;
	double a[4][4]={1.0,0.1,0.3,0.5,
	                0.9,1.0,0.7,0.4,
			0.7,0.3,1.0,0.2,
			0.5,0.6,0.8,1.0};
	double p[3],sum=0.0;
	p[0]=a[0][1]*(a[2][3]*a[0][2]+a[3][2]*a[0][3]);
	p[1]=a[0][2]*(a[1][3]*a[0][1]+a[3][1]*a[0][3]);
	p[2]=a[0][3]*(a[1][2]*a[0][1]+a[2][1]*a[0][2]);
	srand(time(0));
	for(i=0;i<100000;i++)
	{
		j=rand()%3;
		sum+=p[j];
	}
	sum/=100000;
	printf("%lf\n",sum);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值