夺冠概率
足球比赛具有一定程度的偶然性,弱队也有战胜强队的可能。
假设有甲、乙、丙、丁四个球队。根据他们过去比赛的成绩,得出每个队与另一个队对阵时取胜的概率表:
甲 乙 丙 丁
甲 - 0.1 0.3 0.5
乙 0.9 - 0.7 0.4
丙 0.7 0.3 - 0.2
丁 0.5 0.6 0.8 -
数据含义:甲对乙的取胜概率为0.1,丙对乙的胜率为0.3,...
现在要举行一次锦标赛。双方抽签,分两个组比,获胜的两个队再争夺冠军。(参见【1.jpg】)
请你进行10万次模拟,计算出甲队夺冠的概率。
注意:
请仔细调试!您的程序只有能运行出正确结果的时候才有机会得分!
在评卷时使用的输入数据与试卷中给出的实例数据可能是不同的。
请把所有函数写在同一个文件中,调试好后,存入与【考生文件夹】下对应题号的“解答.txt”中即可。
相关的工程文件不要拷入。
源代码中不能能使用诸如绘图、Win32API、中断调用、硬件操作或与操作系统相关的API。
允许使用STL类库,但不能使用MFC或ATL等非ANSI c++标准的类库。例如,不能使用CString类型(属于MFC类库)。
思路:甲要夺冠有三种可能:甲赢乙,然后甲赢丙丁当中赢的那个;甲赢丙,然后甲赢乙丁当中赢的那个;甲赢丁,然后甲赢乙丙当中赢的那个。可以用一个数组把上面的概率表存下来,然后再用一个数组记录下甲夺冠的三种情况的概率,再然后就是用rand函数了。
代码:
#include <stdio.h>
#include <time.h>
int main()
{
int i,j;
double a[4][4]={1.0,0.1,0.3,0.5,
0.9,1.0,0.7,0.4,
0.7,0.3,1.0,0.2,
0.5,0.6,0.8,1.0};
double p[3],sum=0.0;
p[0]=a[0][1]*(a[2][3]*a[0][2]+a[3][2]*a[0][3]);
p[1]=a[0][2]*(a[1][3]*a[0][1]+a[3][1]*a[0][3]);
p[2]=a[0][3]*(a[1][2]*a[0][1]+a[2][1]*a[0][2]);
srand(time(0));
for(i=0;i<100000;i++)
{
j=rand()%3;
sum+=p[j];
}
sum/=100000;
printf("%lf\n",sum);
return 0;
}