农夫约翰希望为他的奶牛们建立一个畜栏。
这些挑剔的畜生要求畜栏必须是正方形的,而且至少要包含C单位的三叶草,来当做它们的下午茶。
畜栏的边缘必须与X,Y轴平行。
约翰的土地里一共包含N单位的三叶草,每单位三叶草位于一个1 x 1的土地区域内,区域位置由其左下角坐标表示,并且区域左下角的X,Y坐标都为整数,范围在1到10000以内。
多个单位的三叶草可能会位于同一个1 x 1的区域内,因为这个原因,在接下来的输入中,同一个区域坐标可能出现多次。
只有一个区域完全位于修好的畜栏之中,才认为这个区域内的三叶草在畜栏之中。
请你帮约翰计算一下,能包含至少C单位面积三叶草的情况下,畜栏的最小边长是多少。
输入格式
第一行输入两个整数 C 和 N。
接下来 N 行,每行输入两个整数 X 和 Y,代表三叶草所在的区域的X,Y坐标。
同一行数据用空格隔开。
输出格式
输出一个整数,代表畜栏的最小边长。
数据范围
1≤C≤500,
C≤N≤500
输入样例:
3 4
1 2
2 1
4 1
5 2
输出样例:
4
给一些坐标,问要用一个矩形框柱C个坐标点的最小边长是多少;
坐标范围是1e4,如果直接开1e8的矩阵遍历肯定会超时,但给的数据最多只有5e2组,离散化后肯定可以满足要求;
先将所有坐标放到一个vector里排序去重以后用各个数字的位置作为这个数字离散化以后的标志;
然后建立一个前缀和矩阵,二分长度;
每次检查的时候,x2代表当前矩形的右边界,递增x2,因为不知道离散化之前满足边长条件的左边界,从左到右递增确定左边界x1,y1,y2同理,将矩形的边界确定后用前缀和求当前矩形里的草的个数;
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
typedef pair<int, int> PII;
int N, C;
int sum[1010][1010]; //前缀和 因为x跟y最多会有1000个不同的坐标,所以开大一点避免溢出
vector<PII> points; //点的坐标
vector<int> numbers; //离散化结果
int get_id(int n)
{
return lower_bound(numbers.begin(), numbers.