import tensorflow as tf
import numpy as np
# create data
x_data = np.random.rand(100).astype(np.float32)
y_date = x_data*0.1+0.3
# create tensorflow struction start
Weights = tf.Variable(tf.random_normal([1],-1.0,1.0))
biases = tf.Variable(tf.zeros(1))
y = Weights*x_data + biases
loss = tf.reduce_mean(tf.square(y-y_date))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
init = tf.initialize_all_variables()
# create tensorflow struction end
# create session
with tf.Session() as sess:
sess.run(init)
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step,sess.run(Weights),sess.run(biases))
关于tensorflow入门代码
最新推荐文章于 2021-09-23 09:38:33 发布