【THUSC2017】杜老师 题解

题目大意

  给定 L , R L,R L,R,求从 L L L R R R 的这 R − L + 1 R-L+1 RL+1 个数中能选出多少个不同的子集,满足子集中所有的数的乘积是一个完全平方数。特别地,空集也算一种选法,定义其乘积为 1 1 1

  多测, T ≤ 100 T \leq 100 T100
   1 ≤ L ≤ R ≤ 1 0 7 ,     ∑ i = 1 T R i − L i + 1 ≤ 6 × 1 0 7 1 \leq L \leq R \leq 10^7,~~~\sum_{i=1}^T R_i-L_i+1 \leq 6 \times 10^7 1LR107,   i=1TRiLi+16×107
  5s

\\
\\
\\

题解

  在 thu 门外哭哭的日子

  感觉一开始没有这个方向的话就想不到这个方向了。。还是说我太菜了。。

【50%】 T ≤ 10 ,    ∑ R i − L i + 1 ≤ 5000 T \leq 10,~~\sum R_i-L_i+1 \leq 5000 T10,  RiLi+15000

  假设 [ 1 , m a x R ] [1,maxR] [1,maxR] 范围内的质数有 p n u m pnum pnum 个,分别为 p 1 , ⋯   , p p n u m p_1,\cdots,p_{pnum} p1,,ppnum
  把每个数字 i i i 看成一个 p n u m pnum pnum 维 01 向量 v i ⃗ \vec{v_i} vi ,其中第 j j j 维为 1 1 1 当且仅当 i i i 含有奇数个质因子 p j p_j pj
  那么原数相乘,相当于向量异或,于是就想到线性基。于是发现答案等于 2 R − L + 1 − 基 的 数 量 2^{R-L+1-基的数量} 2RL+1

  然后优化,质数以 m a x R \sqrt{maxR} maxR 为界分为大质数和小质数,每个数最多含有 1 个大质数,因此出现过的大质数的位置一定是基,因此线性基就只用考虑小质数了。小质数共 446 个。
  时间 O ( T ( ∑ R i − L i + 1 ) ⋅ 446 ⋅ 446 64 ) 。 O(T (\sum R_i-L_i+1) \cdot 446 \cdot \frac{446}{64})。 O(T(RiLi+1)44664446)

【100%】

  思考第 11、12 个数据点的条件: R i − L i ≥ 999990 R_i-Li \geq 999990 RiLi999990,是要说什么呢?
  是要引导发现一个性质:当区间长度 R i − L i + 1 ≥ 2 m a x R R_i-L_i+1 \geq 2\sqrt{maxR} RiLi+12maxR 时,所有小质数的位置都是基。

  口胡证明:相当于证明所有的小质数都与别的质数线性独立。设有小质数 p 1 p_1 p1,设质数 p 2 > p 1 p_2>p_1 p2>p1
  当区间长度 ≥ 2 m a x R \geq 2\sqrt{maxR} 2maxR 时, p 1 p_1 p1 至少出现两次了,且这两次里至少有一次是有 p 1 p_1 p1 而没有 p 2 p_2 p2 的,( p 1 p_1 p1 出现的间隔为 p 1 p_1 p1,这个间隔不可能使 p 2 p_2 p2 也出现两次。)然后区间内必然还有数是既不含 p 1 p_1 p1 也不含 p 2 p_2 p2 的。
  也就是说,在不含 p 2 p_2 p2 的数里,既可以含有 p 1 p_1 p1,也可以不含有 p 1 p_1 p1,那么 p 1 p_1 p1 p 2 p_2 p2 就线性独立了。
   p 1 p_1 p1 取遍所有的小质数,那么就有:所有的小质数都与别的质数线性独立,因此所有小质数的位置都是基。

  这题可以偷懒直接把 2 m a x R 2\sqrt{maxR} 2maxR 当成 6000 6000 6000 省点常数。也就是区间长度 ≥ 6000 \geq 6000 6000 之后就不用做线性基了,可以扫一遍统计大质数然后输出。
  那么时间就是 O ( ( ∑ R i − L i + 1 ) + T ⋅ 6000 ⋅ 446 ⋅ 446 64 ) O((\sum R_i-L_i+1)+T \cdot 6000 \cdot 446 \cdot \frac{446}{64}) O((RiLi+1)+T600044664446),满打满算应该是跑不过的,但是它跑过去了。

代码

#include<bits/stdc++.h>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;

typedef long long LL;

const int maxn=1e7+5, sqrtn=446;
const LL mo=998244353;

int l,r;

int p0,p[maxn],minp[maxn],divp[maxn],maxp[maxn];
bool bz[maxn],cnt[maxn];
void Prime(int n)
{
	fo(i,2,n)
	{
		if (!bz[i]) p[++p0]=i, cnt[i]=1, minp[i]=maxp[i]=p0, divp[i]=1;
		fo(j,1,p0)
		{
			if ((LL)i*p[j]>n) break;
			int nxt=i*p[j];
			bz[nxt]=1;
			minp[nxt]=j;
			maxp[nxt]=maxp[i];
			if (i%p[j]==0)
			{
				cnt[nxt]=cnt[i]^1;
				divp[nxt]=divp[i];
				break;
			} else
			{
				cnt[nxt]=1;
				divp[nxt]=i;
			}
		}
	}
}

LL Pow(LL x,int y)
{
	LL re=1;
	for(; y; y>>=1, x=x*x%mo) if (y&1) re=re*x%mo;
	return re;
}

bitset<sqrtn+2> zero,base[sqrtn+2],x,f[6005];
int basenum,bignum,big[maxn];
void add()
{
	fd(i,sqrtn,1) if (x[i])
	{
		if (base[i][i]) x^=base[i]; else
		{
			base[i]=x;
			basenum++;
			break;
		}
	}
}

int T,bigP[maxn];
bool apr[maxn];
int main()
{
	Prime(10000000);
	
	scanf("%d",&T);
	while (T--)
	{
		scanf("%d %d",&l,&r);
		
		if (r-l+1>6000)
		{
			int num=0;
			fo(i,l,r) if (maxp[i]>sqrtn && !apr[maxp[i]]) num++, apr[maxp[i]]=1;
			printf("%lld\n",Pow(2,r-l+1-num-sqrtn));
			fo(i,l,r) if (maxp[i]>sqrtn) apr[maxp[i]]=0;
		} else
		{
			basenum=bignum=0;
			fo(i,1,sqrtn) base[i]=zero;
			fo(i,l,r)
			{
				x=zero;
				for(int ii=i; ii>1; ii=divp[ii])
					if (minp[ii]>sqrtn) bigP[i]=minp[ii]; else x[minp[ii]]=cnt[ii];
				if (bigP[i] && !big[bigP[i]])
				{
					big[bigP[i]]=++bignum;
					f[bignum]=x;
				} else
				{
					if (bigP[i]) x^=f[big[bigP[i]]];
					add();
				}
				if (basenum==sqrtn) break;
			}
			printf("%lld\n",Pow(2,r-l+1-basenum-bignum));
			
			fo(i,l,r) big[bigP[i]]=0;
		}
	}
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值