析合树形态计数 dp

  正儿八经的用析合树本身的题没见着,析合树形态计数倒是一大堆。。。

  名词注释:
  子段:一个排列中的连续子序列
  非平凡子段:长度大于 1 1 1、且不为排列本身的子段
  连续段:若把一个子段的元素重排后是连续的,那么这个子段是一个连续段,比如 [ 3 , 5 , 4 , 7 , 6 ] [3,5,4,7,6] [3,5,4,7,6]

V1

题源:【2018-2019 ICPC, NEERC, Northern Eurasia Finals】I. Interval-Free Permutations

题目大意

  给定 n n n,求有多少长度为 n n n 的排列,满足该排列任意一个非平凡子段都不是连续段。

   n ≤ 400 n \leq 400 n400
  多测, T ≤ 50000 T \leq 50000 T50000,同一个数据点的所有 test case 模数相同,模数 ∈ [ 1 0 8 , 1 0 9 ] \in [10^8,10^9] [108,109]
  1.5s

题解

  学习了析合树之后,就知道这等价于问有多少析合树,根节点为析点,它有 n n n 个儿子,且全是叶子。( n ≤ 3 n \leq 3 n3 特判)

  设 X i X_i Xi 表示根节点是析点、有 i i i 个叶子儿子的方案数。也就是答案。
  基本思路是 X i = i ! − ( 根 是 合 点 ) − ( 根 是 析 点 但 儿 子 数 量 ∈ [ 4 , i − 1 ] ) X_i=i!-(根是合点)-(根是析点但儿子数量 \in [4,i-1]) Xi=i!()([4,i1])

  第一种情况,根是合点:先假设这是个单调上升的合点。枚举它的第一个儿子的大小 j j j,后面的儿子就任意了。由于这是第一个儿子,因此这个儿子任意一个严格前缀不能是 1 1 1 开头的连续段。
  因此算一个 H i H_i Hi 表示“长度为 i i i、任意一个严格前缀都不是以 1 1 1 开头的连续段”的排列的数量。容斥一下即可得 H i = i ! − ∑ j = 1 i − 1 H j ⋅ ( i − j ) ! H_i=i!-\sum_{j=1}^{i-1}H_j \cdot (i-j)! Hi=i!j=1i1Hj(ij)!
  最后,根单调下降的方案数等于单调上升的方案数,所以根是合点且有 i i i 个儿子的方案数就是 2 ∑ j = 1 i − 1 H j ⋅ ( i − j ) ! 2\sum_{j=1}^{i-1} H_j \cdot (i-j)! 2j=1i1Hj(ij)!

  第二种情况,根是析点但儿子数量 ∈ [ 4 , i − 1 ] \in [4,i-1] [4,i1]:假设有 j j j 个儿子,由于它们的任意非平凡组合都不能是连续段,所以这 j j j 个儿子的排列顺序有 X j X_j Xj 种。
  再设 B i , j B_{i,j} Bi,j 表示把 i i i 个数划分为 j j j 个排列的方案数,即 B i , j = ∑ k = 1 i B i − k , j − 1 ⋅ k ! B_{i,j}=\sum_{k=1}^i B_{i-k,j-1} \cdot k! Bi,j=k=1iBik,j1k!
  那么这种情况的方案数就是 ∑ j = 4 i − 1 B i , j ⋅ X j \sum_{j=4}^{i-1} B_{i,j}\cdot X_j j=4i1Bi,jXj

  综上, X i = i ! − ( 2 ∑ j = 1 i − 1 H j ⋅ ( i − j ) ! ) − ( ∑ j = 4 i − 1 B i , j ⋅ X j ) X_i=i!-\big(2\sum_{j=1}^{i-1} H_j \cdot (i-j)!\big)-\big(\sum_{j=4}^{i-1} B_{i,j}\cdot X_j\big) Xi=i!(2j=1i1Hj(ij)!)(j=4i1Bi,jXj),时间复杂度 O ( n 3 ) O(n^3) O(n3)

代码

#include<bits/stdc++.h>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;

typedef long long LL;

const int maxn=405;

int n;
LL mo;

LL fac[maxn];
void Pre(int n)
{
	fac[0]=1;
	fo(i,1,n) fac[i]=fac[i-1]*i%mo;
}

LL X[maxn],H[maxn],B[maxn][maxn];
void dp(int n)
{
	fo(i,1,n)
	{
		H[i]=fac[i];
		fo(j,1,i-1) H[i]=(H[i]-H[j]*fac[i-j]%mo+mo)%mo;
	}
	B[0][0]=1;
	fo(i,1,n)
		fo(j,1,i)
			fo(k,1,i) (B[i][j]+=B[i-k][j-1]*fac[k])%=mo;
	fo(i,1,n)
	{
		X[i]=fac[i];
		fo(j,1,i-1) X[i]=(X[i]-2*H[j]*fac[i-j]%mo+mo)%mo;
		fo(j,4,i-1) X[i]=(X[i]-X[j]*B[i][j]%mo+mo)%mo;
	}
}

int T;
int main()
{
	scanf("%d %lld",&T,&mo);
	
	Pre(400);
	dp(400);
	
	while (T--)
	{
		scanf("%d",&n);
		if (n==1) puts("1");
			else if (n==2) puts("2");
			else if (n==3) puts("0");
			else printf("%lld\n",X[n]);
	}
}

V1.5

题源:【Comet OJ - Contest #6】F. permutation

题目大意

  (题意同 V1)
  给定 n n n,求有多少长度为 n n n 的排列,满足该排列任意一个非平凡子段都不是连续段。

   n ≤ 1 0 5 n \leq 10^5 n105
  1s

题解

  其实就是 V1 的加强版,把裸的 dp 用生成函数搞成了一个多项式牛逼题。。。
  待填坑吧。。

V2

题源:【2018 EC Final】B. Mysterious … Host

题目大意

  对于一个排列,它的每一个子段都可以标上一个“是否是连续段”。
  两个长度为 n n n 的排列本质不同,当且仅当存在一个子段 [ l , r ] [l,r] [l,r],它在其中一个排列里是连续段,在另一个排列里不是连续段。
  现在给定 n n n,对于 ∀ i ∈ [ 1 , n ] \forall i \in [1,n] i[1,n],求有多少本质不同的、长度为 i i i 的排列。

   n ≤ 5000 n \leq 5000 n5000,模数是个大质数。
  1s

题解

  这题其实就是问,有多少大小为 i i i 的本质不同的析合树形态。

  设 f i f_i fi 表示大小为 i i i 的本质不同的析合树形态(即答案),依然是按照“根是合点”以及“根是析点”来分类讨论。

  第一种情况,根是合点:只需把 i i i 长度的排列分成若干段即可,这一定能对应合点的儿子划分。因此需要一个 B i , j B_{i,j} Bi,j 表示长度为 i i i 的排列、划分成 j j j 个子段的不同的析合树形态数量,即 B i , j = ∑ k = 1 i B i − k , j − 1 ⋅ f k B_{i,j}=\sum_{k=1}^i B_{i-k,j-1} \cdot f_k Bi,j=k=1iBik,j1fk
  于是这种情况的贡献就是 ∑ j = 2 i B i , j \sum_{j=2}^i B_{i,j} j=2iBi,j

  第二种情况,根是析点:只需把 i i i 长度的排列划分成至少 4 4 4 个子段即可,这一定能对应析点的儿子划分(因为只需把儿子按恰当的顺序排起来即可,根据 V1 我们知道这一定有解的)。因此这种情况的贡献就是 ∑ j = 4 i B i , j \sum_{j=4}^i B_{i,j} j=4iBi,j

  综上, f i = ( ∑ j = 2 i B i , j ) + ( ∑ j = 4 i B i , j ) f_i=\big(\sum_{j=2}^i B_{i,j}\big)+\big(\sum_{j=4}^i B_{i,j} \big) fi=(j=2iBi,j)+(j=4iBi,j),这比 V1 还要简洁。。
  不过这是 O ( n 3 ) O(n^3) O(n3) 的,还要再优化一下。
  观察发现 B B B 数组开两维真是太浪费了, j j j 这一维显然可以去掉,设 g i = ∑ j = 2 i B i , j g_i=\sum_{j=2}^i B_{i,j} gi=j=2iBi,j,那么就有 f i = 2 g i − B i , 2 − B i , 3 f_i=2g_i-B_{i,2}-B_{i,3} fi=2giBi,2Bi,3,其中 B i , 2 B_{i,2} Bi,2 每次 O ( n ) O(n) O(n) 算即可, B i , 3 B_{i,3} Bi,3 借助 B i , 2 B_{i,2} Bi,2 也是每次 O ( n ) O(n) O(n) 算的。这样时间复杂度就是 O ( n 2 ) O(n^2) O(n2) 了。

代码

// g g g 数组的含义比较灵活,贡献完 f i f_i fi 之后它的含义就变成把 B i , 1 B_{i,1} Bi,1 也加进去了。

#include<bits/stdc++.h>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;

typedef long long LL;

const int maxn=5005;

int n;
LL mo;

LL f[maxn],g[maxn],g2[maxn];
void dp()
{
	g[1]=f[1]=1;
	fo(i,2,n)
	{
		fo(j,1,i-1) (g[i]+=g[j]*f[i-j])%=mo;
		fo(j,1,i-1) (g2[i]+=f[j]*f[i-j])%=mo;
		f[i]=(g[i]*2-g2[i]+mo)%mo;
		fo(j,1,i-2) f[i]=(f[i]-g2[i-j]*f[j]%mo+mo)%mo;
		(g[i]+=f[i])%=mo;
	}
}

int T;
int main()
{
	scanf("%d %lld",&n,&mo);
	
	dp();
	
	fo(i,1,n) printf("%lld\n",f[i]);
}

V3

题源:【CTSC2018】青蕈领主

题目大意

  给定 n n n,表示排列长度,然后给出 L 1 , ⋯   , L n L_1,\cdots,L_n L1,,Ln 表示每个元素以它为右端点的最长连续段长度。问有多少种排列,答案模 998244353 998244353 998244353

   n ≤ 50000 n \leq 50000 n50000
  多测, T ≤ 100 T \leq 100 T100,但每个 test case 的 n n n 都相同
  3s

题解

  这个 L i L_i Li 就是析合树建树要用的那个数组。。但是根据这个 L L L 数组是不能唯一确定析合树形态的,比如 [ 1 , 2 , 3 ] [1,2,3] [1,2,3] [ 2 , 1 , 3 ] [2,1,3] [2,1,3] 是不同的析合树形态,但拥有同样的 L L L 数组。
  所以这题不算是严格的析合树形态计数。不过作为析合树的启蒙题,对于连续段还是很有研究的。

  首先这个 L L L 数组需要满足极长连续段不相交,否则是无解。
  虽然 L L L 数组不能还原析合树,但是如果把每个点连向它后面第一个能覆盖到它的点,还是能形成一个树形结构的。
  对于一个结点来说,假设儿子加上自己共 l e n len len 个,那么它的方案数就是长度为 l e n len len、满足“不存在不含最后一个元素的非平凡连续段”的排列的数量。最终答案就等于每个结点的贡献乘起来。
  我们就需要计算一个 f i f_i fi 表示长度为 i i i、满足“不存在不含最后一个元素的非平凡连续段”的排列的数量,最终答案即 ∏ f l e n \prod f_{len} flen

  至于这个 f f f 数组怎么算,我感觉网上几乎所有的博客都有细节错误。
  首先转换一下模型,若排列 p p p 满足“不存在不含最后一个元素的非平凡连续段”,那么它唯一对应一个排列 q q q q p i = i q_{p_i}=i qpi=i), q q q 满足“不存在不含最大值的非平凡连续段”。
  所以来求 q q q 的数量。
  设 q q q 长度为 i i i,考虑删掉 q q q 的最小值,即 1 1 1
  第一种情况:删掉 1 1 1 后排列依然合法,那么这个 1 1 1 只要不放在 2 2 2 的旁边都是可以的,方案数为 ( i − 2 ) f i − 1 (i-2)f_{i-1} (i2)fi1。(证明:放在 2 2 2 旁边肯定不行,若不放在 2 2 2 旁边却造成了非平凡连续段,那么把 1 1 1 删掉它仍然会是个非平凡连续段,矛盾)
  第二种情况:删掉 1 1 1 后排列不合法,出现了非平凡连续段(不含 2 2 2 也不含 i i i)。枚举最长的非平凡连续段长度 j j j,这个连续段插入 1 1 1 后就不存在非平凡连续段了,即原本所有的非平凡连续段都经过 1 1 1 这个位置,这就等价于有一个长度为 j + 1 j+1 j+1 的合法排列把最大值删掉换成 1 1 1,所以贡献为 f j + 1 f_{j+1} fj+1。把这个连续段缩起来以后排列必须合法,即 f i − j f_{i-j} fij,这个连续段的值域选取有 i − j − 2 i-j-2 ij2 种。因此这种情况的方案数就是 ∑ j = 2 i − 3 ( i − j − 2 ) f j + 1 f i − j \sum_{j=2}^{i-3}(i-j-2)f_{j+1}f_{i-j} j=2i3(ij2)fj+1fij,即 ∑ j = 3 i − 2 ( j − 2 ) f j f i + 1 − j \sum_{j=3}^{i-2}(j-2)f_{j}f_{i+1-j} j=3i2(j2)fjfi+1j
  综上:
f i = ( i − 2 ) f i − 1 + ∑ j = 3 i − 2 ( j − 2 ) f j f i + 1 − j f_i=(i-2)f_{i-1}+\sum_{j=3}^{i-2}(j-2)f_{j}f_{i+1-j} fi=(i2)fi1+j=3i2(j2)fjfi+1j

  于是分治 NTT 预处理出来就好了,时间 O ( n log ⁡ 2 n ) O(n \log^2 n) O(nlog2n)

思考

  就是求 f f f 的时候,我脑补了另一种方法。

  现在要求长度为 i i i、满足“不存在不含最后一个元素的非平凡连续段”的排列数量。我就考虑这样的排列对应的析合树。转化成析合树是什么限制呢?第一,任意非叶子结点除去最后一个儿子外必须是单个元素;第二,合点只能有两个儿子;第三,上升合点的合儿子必须下降,下降合点的合儿子必须上升。
  设 g i g_i gi 表示根节点为上升合点的合法排列数(下降合点方案数跟上升是一样的), h i h_i hi 表示根节点为析点的合法排列数,那么就有 f i = 2 g i + h i f_i=2g_i+h_i fi=2gi+hi
  第一种情况:根是上升合点,那么它只能有两个儿子,且第二个儿子是析点或下降合点,所以 g i = g i − 1 + h i − 1 = f i − 1 − g i − 1 g_i=g_{i-1}+h_{i-1}=f_{i-1}-g_{i-1} gi=gi1+hi1=fi1gi1
  第二种情况:根是析点,那么根的儿子所构成的排列就必须满足“任意非平凡子段都不是连续段”,即 V1 所求的那种,沿用那个数组 X i X_i Xi 表示“不存在非平凡连续段”的排列数量。因此 h i = ∑ j = 4 i X j f i + 1 − j h_i=\sum_{j=4}^i X_jf_{i+1-j} hi=j=4iXjfi+1j
  综上, f i = 2 g i + ∑ j = 4 i X j f i + 1 − j = 2 ( f i − 1 − f i − 2 + f i − 3 ⋯   ) + ∑ j = 4 i X j f i + 1 − j f_i=2g_i+\sum_{j=4}^i X_jf_{i+1-j}=2(f_{i-1}-f_{i-2}+f_{i-3}\cdots)+\sum_{j=4}^i X_jf_{i+1-j} fi=2gi+j=4iXjfi+1j=2(fi1fi2+fi3)+j=4iXjfi+1j

  但这种方法由于要求 X X X 数组因此直接 dp 的话要 O ( n 3 ) O(n^3) O(n3)
  然后就不明白了,两种方法求的 f f f 是一样的,但时间复杂度却不同,那是不是说 X X X f f f 存在更深层的关联,要么可以把方法 2 的式子推导成方法 1,要么可以利用潜在的关联通过更优秀的复杂度求解 X X X
  (由于 V1.5 的存在,这种关联很可能是生成函数上的关联。。

代码

#include<bits/stdc++.h>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;

typedef long long LL;

const int maxn=5e4+5, maxlen=2e5+5;
const LL mo=998244353, g=3;

int n,a[maxn];

void ReadInt(int &data)
{
	data=0;
	char ch=getchar();
	while (ch<'0' || ch>'9') ch=getchar();
	do{
		data=(data<<3)+(data<<1)+ch-'0';
		ch=getchar();
	} while (ch>='0' && ch<='9');
}

LL Pow(LL x,LL y)
{
	LL re=1;
	for(; y; y>>=1, x=x*x%mo) if (y&1) re=re*x%mo;
	return re;
}

LL tp[maxlen],gpow[maxlen],ginv[maxlen];
int rv[maxlen];
void NTT(LL *a,int len,int sig)
{
	fo(i,0,len-1) tp[rv[i]]=a[i];
	for(int m=2; m<=len; m<<=1)
	{
		int hal=m>>1;
		LL gw=(sig==1 ?gpow[m] :ginv[m]), w=1;
		for(int j=0; j<hal; j++, (w*=gw)%=mo)
			for(int k=j; k<len; k+=m)
			{
				LL u=tp[k], v=tp[k+hal]*w%mo;
				tp[k]=(u+v)%mo;
				tp[k+hal]=(u-v+mo)%mo;
			}
	}
	memcpy(a,tp,sizeof(LL)*len);
}
void FFT(LL *a,LL *b,int n,int m)
{
	int len=1;
	while (len<=n+m) len<<=1;
	for(int i=0, j, k, l; i<len; rv[k]=i++)
		for(j=i, k=0, l=1; l<len; j>>=1, l<<=1) k=(k<<1)+(j&1);
	
	fo(i,n+1,len) a[i]=0;
	fo(i,m+1,len) b[i]=0;
	NTT(a,len,1), NTT(b,len,1);
	fo(i,0,len-1) (a[i]*=b[i])%=mo;
	NTT(a,len,-1);
	LL invlen=Pow(len,mo-2);
	fo(i,0,len-1) (a[i]*=invlen)%=mo;
}

LL f[maxn],fa[maxlen],fb[maxlen];
void cdq(int l,int r)
{
	if (l==r)
	{
		(f[l]+=f[l-1]*(l-2))%=mo;
		return;
	}
	int mid=(l+r)>>1;
	cdq(l,mid);
	
	if (l==3)
	{
		fo(i,l,mid) fa[i-l]=(i-2)*f[i]%mo, fb[i-l]=f[i];
		FFT(fa,fb,mid-l,mid-l);
		fo(i,max(mid+1,l+2),r) (f[i]+=fa[i+1-l-3])%=mo;
	} else
	{
		fo(i,l,mid) fa[i-l]=f[i];
		fo(i,l,r) fb[i-l]=f[i-l+3];
		FFT(fa,fb,mid-l,r-l);
		fo(i,max(mid+1,l+2),r) (f[i]+=fa[i+1-l-3]*(i-3))%=mo;
	}
	
	cdq(mid+1,r);
}

int T,z0,z[maxn],son[maxn];
int main()
{
	ReadInt(T), ReadInt(n);
	
	for(int m=2; m<=131072; m<<=1) gpow[m]=Pow(g,(mo-1)/m), ginv[m]=Pow(gpow[m],mo-2);
	f[1]=1, f[2]=2;
	if (n>=3) cdq(3,n);
	
	while (T--)
	{
		fo(i,1,n) ReadInt(a[i]);
		if (a[n]!=n) {puts("0"); continue;}
		
		memset(son,0,sizeof(son));
		z[z0=1]=n;
		bool insec=0;
		fd(i,n-1,1)
		{
			while (z0 && i+a[z[z0]]<=z[z0]) z0--;
			son[z[z0]]++;
			if (i-a[i]<z[z0]-a[z[z0]]) {insec=1; break;}
			z[++z0]=i;
		}
		if (insec) {puts("0"); continue;}
		
		LL ans=1;
		fo(i,1,n) (ans*=f[son[i]+1])%=mo;
		
		printf("%lld\n",ans);
	}
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值