题目大意
给定
n
n
n 个由 N 和 B 组成的字符串
s
1
,
⋯
,
s
n
s_1,\cdots,s_n
s1,⋯,sn,一个字符串可以做如下操作:增加或删去一个 B 我没有骂人、增加或删去一个 N、增加或删去一个 NB、增加或删去一个 BN。定义两个字符串的距离为:对一个字符串做最少多少次操作,可以使两个字符串的 N、B 数量分别相等。
现给定
s
1
,
⋯
,
s
n
s_1,\cdots,s_n
s1,⋯,sn,求一个也由 N、B 构成的字符串
t
t
t,使得
t
t
t 到
s
1
,
⋯
,
s
n
s_1,\cdots,s_n
s1,⋯,sn 的最大距离最小。
n
≤
3
×
1
0
5
,
∑
∣
s
i
∣
≤
5
×
1
0
5
n \leq 3\times 10^5,\ \ \sum|s_i| \leq 5 \times 10^5
n≤3×105, ∑∣si∣≤5×105
3s
\\
\\
\\
题解
我就一直在想,二分之后,怎么给这个奇怪的图形做扫描线求最大覆盖点呢?我就想啊想,想啊想……
首先一个字符串与其 N、B 的顺序无关,只与 N、B 的数量有关,所以可以表示为平面上一个点
(
x
i
,
y
i
)
(x_i,y_i)
(xi,yi)。
求最大值最小考虑二分,这个也很平凡。
然后两个点的距离的定义也很显然:
d
i
s
(
(
x
,
y
)
,
(
x
i
,
y
i
)
)
=
{
max
(
∣
x
−
x
i
∣
,
∣
y
−
y
i
∣
)
,
s
g
n
(
x
−
x
i
)
=
s
g
n
(
y
−
y
i
)
∣
x
−
x
i
∣
+
∣
y
−
y
i
∣
,
s
g
n
(
x
−
x
i
)
≠
s
g
n
(
y
−
y
i
)
dis((x,y),(x_i,y_i)) = \begin{cases} \max(|x-x_i|,|y-y_i|), & sgn(x-x_i)=sgn(y-y_i) \\ |x-x_i|+|y-y_i|, & sgn(x-x_i)\not=sgn(y-y_i) \end{cases}
dis((x,y),(xi,yi))={max(∣x−xi∣,∣y−yi∣),∣x−xi∣+∣y−yi∣,sgn(x−xi)=sgn(y−yi)sgn(x−xi)=sgn(y−yi)
但二分之后每个点的形状却比较鬼畜
这似乎不好做扫描线求最大覆盖点。。。
于是换一种方法。
假设当前二分到
m
i
d
mid
mid,如果存在答案点
(
x
,
y
)
(x,y)
(x,y) 到其他所有点距离不超过
m
i
d
mid
mid,那么等价于满足如下条件:
∀
1
≤
i
≤
n
,
x
i
−
m
i
d
≤
x
≤
x
i
+
m
i
d
y
i
−
m
i
d
≤
y
≤
y
i
+
m
i
d
∣
x
−
x
i
+
y
i
−
y
∣
=
∣
(
x
−
y
)
−
(
x
i
−
y
i
)
∣
≤
m
i
d
\begin{aligned} \forall 1 \le i \le n,\ \ & x_i-mid \le x \le x_i+mid \\ &y_i-mid \le y \le y_i+mid \\ &|x-x_i+y_i-y|=|(x-y)-(x_i-y_i)| \le mid \end{aligned}
∀1≤i≤n, xi−mid≤x≤xi+midyi−mid≤y≤yi+mid∣x−xi+yi−y∣=∣(x−y)−(xi−yi)∣≤mid
其中前两个条件的作用很显然,否则无论 s g n ( x − x i ) sgn(x-x_i) sgn(x−xi) 是否等于 s g n ( y − y i ) sgn(y-y_i) sgn(y−yi),距离都会大于 m i d mid mid。而第三个条件则用来限制 s g n ( x − x i ) ≠ s g n ( y − y i ) sgn(x-x_i)\not=sgn(y-y_i) sgn(x−xi)=sgn(y−yi) 的情况。(如果 s g n ( x − x i ) = s g n ( y − y i ) sgn(x-x_i)=sgn(y-y_i) sgn(x−xi)=sgn(y−yi),那么满足了前两个条件会自然满足第三个条件;如果 s g n ( x − x i ) ≠ s g n ( y − y i ) sgn(x-x_i)\not=sgn(y-y_i) sgn(x−xi)=sgn(y−yi),那么 ∣ x − x i + y i − y ∣ |x-x_i+y_i-y| ∣x−xi+yi−y∣ 就是两点的距离)
于是这样就可以根据 m i d mid mid 来求出 x , y , x − y x,y,x-y x,y,x−y 的合法区间,简单判断一下是否存在合法的 x , y x,y x,y 即可。在二分时直接根据区间来判断,求答案时枚举一个 x x x。
代码
#include<bits/stdc++.h>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
typedef long long LL;
typedef pair<int,int> pr;
const int maxn=3e5+5, maxlen=5e5+5;
const int inf=3e6+5;
int n,x[maxn],y[maxn];
char s[maxlen];
int ansb,ansn;
bool check(int mid,int ty)
{
int xmin=0, xmax=inf, ymin=0, ymax=inf, dmin=-inf, dmax=inf;
fo(i,1,n)
{
xmin=max(xmin,x[i]-mid);
xmax=min(xmax,x[i]+mid);
ymin=max(ymin,y[i]-mid);
ymax=min(ymax,y[i]+mid);
dmin=max(dmin,x[i]-y[i]-mid);
dmax=min(dmax,x[i]-y[i]+mid);
}
if (xmin>xmax || ymin>ymax || dmin>dmax) return 0;
ymin=max(ymin,xmin-dmax);
ymax=min(ymax,xmax-dmin);
if (ymin>ymax) return 0;
if (ty)
{
fo(x,xmin,xmax)
{
int rymin=max(ymin,x-dmax), rymax=min(ymax,x-dmin);
if (rymin<=rymax && (x>0 || rymax>0))
{
ansb=x, ansn=(x==0) ?rymax :rymin ;
break;
}
}
}
return 1;
}
int main()
{
scanf("%d",&n);
fo(i,1,n)
{
scanf("%s",s+1);
int len=strlen(s+1);
fo(j,1,len) if (s[j]=='B') x[i]++; else y[i]++;
}
int l=0, r=2e6;
while (l<=r)
{
int mid=(l+r)>>1;
if (check(mid,0)) r=mid-1; else l=mid+1;
}
printf("%d\n",++r);
check(r,1);
fo(i,1,ansb) putchar('B');
fo(i,1,ansn) putchar('N');
puts("");
}