【AtCoder Regular 119E】Pancakes 题解

题目大意

  给出一个序列 a 1 , ⋯   , a n a_1,\cdots,a_n a1,,an,你可以选择一段区间 [ l , r ] [l,r] [l,r] 然后翻转 a l , ⋯   , a r a_l,\cdots,a_r al,,ar,使得 ∑ i = 1 n − 1 ∣ a i − a i + 1 ∣ \sum_{i=1}^{n-1} |a_i-a_{i+1}| i=1n1aiai+1 最小。

   n ≤ 3 × 1 0 5 ,   1 ≤ a i ≤ 1 0 9 n \le 3\times 10^5,\ 1 \le a_i \le 10^9 n3×105, 1ai109
  2s

\\
\\
\\

题解

  首先翻转一段区间只有端点处会产生影响,影响是 − ∣ a l − 1 − a l ∣ − ∣ a r − a r + 1 ∣ + ∣ a l − 1 − a r ∣ + ∣ a l − a r + 1 ∣ -|a_{l-1}-a_l|-|a_r-a_{r+1}|+|a_{l-1}-a_r|+|a_l-a_{r+1}| al1alarar+1+al1ar+alar+1

  于是反手就是一个拆开绝对值+四个区域二维偏序。
  光荣 TLE

\\

  于是需要观察出一些额外的性质。
  就是如果 a l − 1 ≤ a l a_{l-1} \le a_l al1al a r ≥ a r + 1 a_r \ge a_{r+1} arar+1,那么翻转 [ l , r ] [l,r] [l,r] 必不会使答案更优。对称地,若 a l − 1 ≥ a l a_{l-1} \ge a_l al1al a r ≤ a r + 1 a_r \le a_{r+1} arar+1,也不行。
  通过讨论可证。
  然后如果 a l − 1 ≤ a l a_{l-1} \le a_l al1al a r ≤ a r + 1 a_r \le a_{r+1} arar+1,那么可以视为两个值域区间 [ a l − 1 , a l ] , [ a r , a r + 1 ] [a_{l-1},a_l],[a_r,a_{r+1}] [al1,al],[ar,ar+1],于是翻转 [ l , r ] [l,r] [l,r] 的收益就是这两个区间的交的长度的两倍。
   a l − 1 ≥ a l a_{l-1} \ge a_l al1al a r ≥ a r + 1 a_r \ge a_{r+1} arar+1 同理。

  所以现在问题转化成,给定若干个值域区间,求任意两个区间的交的最大长度。
  简单的 O ( n log ⁡ n ) O(n \log n) O(nlogn) 数据结构即可。
  正着做一次再把序列反过来做一次。

代码

#include<bits/stdc++.h>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;

typedef long long LL;
typedef pair<int,int> pr;

const int maxn=3e5+5;
const int inf=2139062143;

int n,a[maxn];

int b[maxn],b0;
void discretize() {
	memcpy(b,a,sizeof(a));
	sort(b+1,b+1+n);
	b0=unique(b+1,b+1+n)-b-1;
	fo(i,1,n) a[i]=lower_bound(b+1,b+1+b0,a[i])-b;
}

int tr[4*maxn];
void tr_xg(int k,int l,int r,int x,int z) {
	if (l==r) {
		tr[k]=z;
		return;
	}
	int t=k<<1, mid=(l+r)>>1;
	if (x<=mid) tr_xg(t,l,mid,x,z); else tr_xg(t+1,mid+1,r,x,z);
	tr[k]=min(tr[t],tr[t+1]);
}

LL ans,organs;
vector<int> Q[maxn];
int cnt[maxn];
void solve() {
	fo(i,1,b0) Q[i].clear();
	fo(i,2,n) if (a[i-1]<a[i]) {
		cnt[a[i-1]]++;
		Q[a[i]].push_back(a[i-1]);
	}
	
	memset(tr,127,sizeof(tr));
	fo(i,1,b0) {
		if (cnt[i]) tr_xg(1,1,b0,i,i);
		for(int x:Q[i]) {
			if (--cnt[x]==0) tr_xg(1,1,b0,x,inf);
			int lp=max(tr[1],x);
			if (lp<=i) ans=min(ans,organs-2ll*(b[i]-b[lp]));
		}
	}
}

int main()
{
	scanf("%d",&n);
	fo(i,1,n) scanf("%d",&a[i]);
	
	fo(i,2,n) ans+=abs(a[i]-a[i-1]);
	organs=ans;
	fo(i,2,n-1) ans=min(ans,organs-abs(a[i]-a[i+1])+abs(a[1]-a[i+1]));
	fo(i,2,n-1) ans=min(ans,organs-abs(a[i]-a[i-1])+abs(a[n]-a[i-1]));
	
	discretize();
	solve();
	reverse(a+1,a+1+n);
	solve();
	
	printf("%lld\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值