题目大意
给出一个序列 a 1 , ⋯ , a n a_1,\cdots,a_n a1,⋯,an,你可以选择一段区间 [ l , r ] [l,r] [l,r] 然后翻转 a l , ⋯ , a r a_l,\cdots,a_r al,⋯,ar,使得 ∑ i = 1 n − 1 ∣ a i − a i + 1 ∣ \sum_{i=1}^{n-1} |a_i-a_{i+1}| ∑i=1n−1∣ai−ai+1∣ 最小。
n
≤
3
×
1
0
5
,
1
≤
a
i
≤
1
0
9
n \le 3\times 10^5,\ 1 \le a_i \le 10^9
n≤3×105, 1≤ai≤109
2s
\\
\\
\\
题解
首先翻转一段区间只有端点处会产生影响,影响是 − ∣ a l − 1 − a l ∣ − ∣ a r − a r + 1 ∣ + ∣ a l − 1 − a r ∣ + ∣ a l − a r + 1 ∣ -|a_{l-1}-a_l|-|a_r-a_{r+1}|+|a_{l-1}-a_r|+|a_l-a_{r+1}| −∣al−1−al∣−∣ar−ar+1∣+∣al−1−ar∣+∣al−ar+1∣。
于是反手就是一个拆开绝对值+四个区域二维偏序。
光荣 TLE
\\
于是需要观察出一些额外的性质。
就是如果
a
l
−
1
≤
a
l
a_{l-1} \le a_l
al−1≤al 且
a
r
≥
a
r
+
1
a_r \ge a_{r+1}
ar≥ar+1,那么翻转
[
l
,
r
]
[l,r]
[l,r] 必不会使答案更优。对称地,若
a
l
−
1
≥
a
l
a_{l-1} \ge a_l
al−1≥al 且
a
r
≤
a
r
+
1
a_r \le a_{r+1}
ar≤ar+1,也不行。
通过讨论可证。
然后如果
a
l
−
1
≤
a
l
a_{l-1} \le a_l
al−1≤al 且
a
r
≤
a
r
+
1
a_r \le a_{r+1}
ar≤ar+1,那么可以视为两个值域区间
[
a
l
−
1
,
a
l
]
,
[
a
r
,
a
r
+
1
]
[a_{l-1},a_l],[a_r,a_{r+1}]
[al−1,al],[ar,ar+1],于是翻转
[
l
,
r
]
[l,r]
[l,r] 的收益就是这两个区间的交的长度的两倍。
a
l
−
1
≥
a
l
a_{l-1} \ge a_l
al−1≥al 且
a
r
≥
a
r
+
1
a_r \ge a_{r+1}
ar≥ar+1 同理。
所以现在问题转化成,给定若干个值域区间,求任意两个区间的交的最大长度。
简单的
O
(
n
log
n
)
O(n \log n)
O(nlogn) 数据结构即可。
正着做一次再把序列反过来做一次。
代码
#include<bits/stdc++.h>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
typedef long long LL;
typedef pair<int,int> pr;
const int maxn=3e5+5;
const int inf=2139062143;
int n,a[maxn];
int b[maxn],b0;
void discretize() {
memcpy(b,a,sizeof(a));
sort(b+1,b+1+n);
b0=unique(b+1,b+1+n)-b-1;
fo(i,1,n) a[i]=lower_bound(b+1,b+1+b0,a[i])-b;
}
int tr[4*maxn];
void tr_xg(int k,int l,int r,int x,int z) {
if (l==r) {
tr[k]=z;
return;
}
int t=k<<1, mid=(l+r)>>1;
if (x<=mid) tr_xg(t,l,mid,x,z); else tr_xg(t+1,mid+1,r,x,z);
tr[k]=min(tr[t],tr[t+1]);
}
LL ans,organs;
vector<int> Q[maxn];
int cnt[maxn];
void solve() {
fo(i,1,b0) Q[i].clear();
fo(i,2,n) if (a[i-1]<a[i]) {
cnt[a[i-1]]++;
Q[a[i]].push_back(a[i-1]);
}
memset(tr,127,sizeof(tr));
fo(i,1,b0) {
if (cnt[i]) tr_xg(1,1,b0,i,i);
for(int x:Q[i]) {
if (--cnt[x]==0) tr_xg(1,1,b0,x,inf);
int lp=max(tr[1],x);
if (lp<=i) ans=min(ans,organs-2ll*(b[i]-b[lp]));
}
}
}
int main()
{
scanf("%d",&n);
fo(i,1,n) scanf("%d",&a[i]);
fo(i,2,n) ans+=abs(a[i]-a[i-1]);
organs=ans;
fo(i,2,n-1) ans=min(ans,organs-abs(a[i]-a[i+1])+abs(a[1]-a[i+1]));
fo(i,2,n-1) ans=min(ans,organs-abs(a[i]-a[i-1])+abs(a[n]-a[i-1]));
discretize();
solve();
reverse(a+1,a+1+n);
solve();
printf("%lld\n",ans);
}