【2021 Multi-University 4 E】Didn‘t I Say to Make My Abilities Average in the Next Life?! 题解

题目大意

  定义一个序列的 average 为 最 大 值 + 最 小 值 2 \frac{最大值+最小值}{2} 2+
  给定一个序列 a 1 , ⋯   , a n a_1,\cdots,a_n a1,,an,有 m m m 次询问,每次问这个区间的所有子区间的 average 期望。

   n , m ≤ 2 × 1 0 5 ,   1 ≤ a i ≤ 1 0 9 n,m \le 2 \times 10^5,\ 1 \le a_i \le 10^9 n,m2×105, 1ai109
  多测, ∑ n , ∑ m ≤ 3 × 1 0 5 \sum n,\sum m \le 3 \times 10^5 n,m3×105
  8s

\\
\\
\\

扯淡

  考场上脑补了个 O ( m n ) O(m \sqrt n) O(mn ) 的只增莫队巨难写,写到最后又 WA 又 T。
  第二天牛爷爷说这是个原题,上网搜了一下大家说这个题是【HNOI2016 序列】,于是就去学习了一下,老年选手被这个神奇的技巧秀得头皮发麻。。。

题解

  首先 E [ max ⁡ + min ⁡ 2 ] = E [ max ⁡ ] + E [ min ⁡ ] 2 \mathbb E[\frac{\max+\min}{2}]=\frac{\mathbb E[\max]+\mathbb E[\min]}{2} E[2max+min]=2E[max]+E[min],所以问题变成每次求一个区间所有子区间的 max ⁡ \max max 和以及 min ⁡ \min min 和。这就是【HNOI2016 序列】了。

  做法多种多样,莫队和在线 O ( n log ⁡ n + m ) O(n \log n+m) O(nlogn+m) 的都有,但其实本质相同的,莫队到在线也就多一步小转化而已。下面就讲在线的。
  考虑这样一个数组: f i f_i fi 表示右端点为 i i i、左端点 ∈ [ 1 , i ] \in [1,i] [1,i] 的所有区间的 max ⁡ \max max 和。它的转移很简单,就是找到 i i i 上一个比它大的数 L i L_i Li,那么左端点 ≤ L i \le L_i Li 的区间的 max ⁡ \max max 都保持不变,左端点 ∈ ( L i , i ] \in (L_i,i] (Li,i] 的区间的 max ⁡ \max max 等于 a i a_i ai,因此
f i = f L i + a i ( i − L i ) f_i=f_{L_i}+a_i(i-L_i) fi=fLi+ai(iLi)

  这东西怎么用呢?变形得到 f i − f L i = a i ( i − L i ) f_i-f_{L_i}=a_i(i-L_i) fifLi=ai(iLi),也就是说,知道了 i i i 的转移点 L i L_i Li,那么就知道了左端点 ∈ ( L i , i ] \in(L_i,i] (Li,i]、右端点为 i i i 的所有区间的 max ⁡ \max max 和。
  更进一步, i i i L i L_i Li 转移来, L i L_i Li L L i L_{L_i} LLi 转移来……这样形成一个转移路径(实际上就是以 i i i 结尾的单调栈),在这条路径上的任何一个 j j j,都满足 f i − f j f_i-f_j fifj 等于左端点 ∈ ( j , i ] \in(j,i] (j,i]、右端点为 i i i 的所有区间的 max ⁡ \max max 和。

  接下来就可以做这题了。
  询问一个区间 [ l , r ] [l,r] [l,r] 的所有子区间的 max ⁡ \max max 和,先找到这个区间的最大值所在位置 m x mx mx,那么凡是左端点 ∈ [ l , m x ] \in [l,mx] [l,mx]、右端点 ∈ ( m x , r ] \in (mx,r] (mx,r] 的子区间,最大值都是 a m x a_{mx} amx。因此问题转化成 [ l , m x ) [l,mx) [l,mx) ( m x , r ] (mx,r] (mx,r] 的子问题。
  考虑 ( m x , r ] (mx,r] (mx,r],重要的性质是, m x mx mx 一定在 r r r 的转移路径上,因此 f r − f m x f_r-f_{mx} frfmx 就是左端点 ∈ ( m x , r ] \in (mx,r] (mx,r]、右端点为 r r r 的子区间的 max ⁡ \max max 和;同理, m x mx mx 一定也在 r − 1 r-1 r1 的转移路径上,所以 f r − 1 − f m x f_{r-1}-f_{mx} fr1fmx 就是左端点 ∈ ( m x , r − 1 ] \in (mx,r-1] (mx,r1]、右端点为 r − 1 r-1 r1 的子区间的 max ⁡ \max max 和……
  因此 ( m x , r ] (mx,r] (mx,r] 的贡献就是
( f r − f m x ) + ( f r − 1 − f m x ) + ⋯ + ( f m x + 1 − f m x ) = ( ∑ i = m x + 1 r f i ) − f m x ( r − m x ) (f_r-f_{mx})+(f_{r-1}-f_{mx})+\cdots+(f_{mx+1}-f_{mx})=\left(\sum_{i=mx+1}^rf_i\right)-f_{mx}(r-mx) (frfmx)+(fr1fmx)++(fmx+1fmx)=(i=mx+1rfi)fmx(rmx)

  所以求个 f f f 的前缀和就做好了。
  同理可求 [ l , m x ) [l,mx) [l,mx) 的贡献,以及 min ⁡ \min min 和。

  时间复杂度,预处理 rmq 需要 O ( n log ⁡ n ) O(n \log n) O(nlogn),预处理 f f f 需要 O ( n ) O(n) O(n),每个询问是 O ( 1 ) O(1) O(1) 的,因此是 O ( n log ⁡ n + m ) O(n \log n + m) O(nlogn+m)

代码

#include<bits/stdc++.h>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;

typedef long long LL;

const int maxn=2e5+5, MX=17;
const LL mo=1e9+7, inv2=(mo+1)>>1;

int n,m,a[maxn];

int st_mx[MX+2][maxn],st_mn[MX+2][maxn],Log[maxn];
void rmq_pre() {
	fo(i,1,n) st_mx[0][i]=st_mn[0][i]=i;
	fo(i,2,n) Log[i]=Log[i>>1]+1;
	fo(j,1,MX)
		fo(i,1,n) {
			st_mx[j][i]=st_mx[j-1][i];
			st_mn[j][i]=st_mn[j-1][i];
			int t=i+(1<<(j-1));
			if (t<=n) {
				if (a[st_mx[j][i]]<a[st_mx[j-1][t]]) st_mx[j][i]=st_mx[j-1][t];
				if (a[st_mn[j][i]]>=a[st_mn[j-1][t]]) st_mn[j][i]=st_mn[j-1][t];
			}
		}
}
pair<int,int> rmq(int l,int r) {
	int t=Log[r-l+1];
	int mx=(a[st_mx[t][l]]>=a[st_mx[t][r-(1<<t)+1]]) ?st_mx[t][l] :st_mx[t][r-(1<<t)+1];
	int mn=(a[st_mn[t][l]]<a[st_mn[t][r-(1<<t)+1]]) ?st_mn[t][l] :st_mn[t][r-(1<<t)+1];
	return make_pair(mx,mn);
}

LL f_l_mx[maxn],f_l_mn[maxn],f_r_mx[maxn],f_r_mn[maxn];
LL s_l_mx[maxn],s_l_mn[maxn],s_r_mx[maxn],s_r_mn[maxn];
int z0,z[maxn];
void f_pre() {
	z0=0;
	fo(i,1,n) {
		while (z0 && a[z[z0]]<a[i]) z0--;
		f_l_mx[i]=(f_l_mx[z[z0]]+(LL)a[i]*(i-z[z0]))%mo;
		s_l_mx[i]=(s_l_mx[i-1]+f_l_mx[i])%mo;
		z[++z0]=i;
	}
	z0=0;
	fo(i,1,n) {
		while (z0 && a[z[z0]]>=a[i]) z0--;
		f_l_mn[i]=(f_l_mn[z[z0]]+(LL)a[i]*(i-z[z0]))%mo;
		s_l_mn[i]=(s_l_mn[i-1]+f_l_mn[i])%mo;
		z[++z0]=i;
	}
	z0=0;
	s_r_mx[n+1]=0;
	fd(i,n,1) {
		while (z0 && a[z[z0]]<=a[i]) z0--;
		f_r_mx[i]=(f_r_mx[z[z0]]+(LL)a[i]*(z[z0]-i))%mo;
		s_r_mx[i]=(s_r_mx[i+1]+f_r_mx[i])%mo;
		z[++z0]=i;
	}
	z0=0;
	s_r_mn[n+1]=0;
	fd(i,n,1) {
		while (z0 && a[z[z0]]>a[i]) z0--;
		f_r_mn[i]=(f_r_mn[z[z0]]+(LL)a[i]*(z[z0]-i))%mo;
		s_r_mn[i]=(s_r_mn[i+1]+f_r_mn[i])%mo;
		z[++z0]=i;
	}
}

LL Pow(LL x,LL y) {
	LL re=1;
	for(; y; y>>=1, x=x*x%mo) if (y&1) re=re*x%mo;
	return re;
}

LL sum(LL x) {return x*(x+1)%mo*inv2%mo;}

int main() {
	int T;
	scanf("%d",&T);
	while (T--) {
		scanf("%d %d",&n,&m);
		fo(i,1,n) scanf("%d",&a[i]);
		
		rmq_pre();
		f_pre();
		
		while (m--) {
			int l,r;
			scanf("%d %d",&l,&r);
			
			pair<int,int> p=rmq(l,r);
			int mx=p.first, mn=p.second;
			LL ans_mx=a[mx]*(LL)(mx-l+1)%mo*(r-mx+1)%mo;
			(ans_mx+=s_l_mx[r]-s_l_mx[mx]+mo-f_l_mx[mx]*(r-mx)%mo+mo)%=mo;
			(ans_mx+=s_r_mx[l]-s_r_mx[mx]+mo-f_r_mx[mx]*(mx-l)%mo+mo)%=mo;
			LL ans_mn=a[mn]*(LL)(mn-l+1)%mo*(r-mn+1)%mo;
			(ans_mn+=s_l_mn[r]-s_l_mn[mn]+mo-f_l_mn[mn]*(r-mn)%mo+mo)%=mo;
			(ans_mn+=s_r_mn[l]-s_r_mn[mn]+mo-f_r_mn[mn]*(mn-l)%mo+mo)%=mo;
			LL ans=(ans_mx+ans_mn)%mo*inv2%mo*Pow(sum(r-l+1),mo-2)%mo;
			
			printf("%lld\n",ans);
		}
	}
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值