原题链接:力扣
描述:
如果一棵二叉树满足下述几个条件,则可以称为 奇偶树 :
二叉树根节点所在层下标为 0 ,根的子节点所在层下标为 1 ,根的孙节点所在层下标为 2 ,依此类推。
偶数下标 层上的所有节点的值都是 奇 整数,从左到右按顺序 严格递增
奇数下标 层上的所有节点的值都是 偶 整数,从左到右按顺序 严格递减
给你二叉树的根节点,如果二叉树为 奇偶树 ,则返回 true ,否则返回 false 。
示例 1:
输入:root = [1,10,4,3,null,7,9,12,8,6,null,null,2]
输出:true
解释:每一层的节点值分别是:
0 层:[1]
1 层:[10,4]
2 层:[3,7,9]
3 层:[12,8,6,2]
由于 0 层和 2 层上的节点值都是奇数且严格递增,而 1 层和 3 层上的节点值都是偶数且严格递减,因此这是一棵奇偶树。
示例 2:
输入:root = [5,4,2,3,3,7]
输出:false
解释:每一层的节点值分别是:
0 层:[5]
1 层:[4,2]
2 层:[3,3,7]
2 层上的节点值不满足严格递增的条件,所以这不是一棵奇偶树。
示例 3:
输入:root = [5,9,1,3,5,7]
输出:false
解释:1 层上的节点值应为偶数。
示例 4:
输入:root = [1]
输出:true
示例 5:
输入:root = [11,8,6,1,3,9,11,30,20,18,16,12,10,4,2,17]
输出:true
提示:
树中节点数在范围 [1, 105] 内
1 <= Node.val <= 106
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/even-odd-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路:
* 使用动态规划的思路去解决, * 动态规划的方法中,首先判断这一层节点是否符合递增或者递减。不符合返回false, * 如果符合,则返回下一层层级节点的结果。
代码:
public boolean isEvenOddTree(TreeNode root) {
List<TreeNode> list = new ArrayList<>();
list.add(root);
return isEvenOddTree(list, true);
}
private boolean isEvenOddTree(List<TreeNode> list, boolean isEven) {
if (list.size() == 0) {
return true;
}
Integer lastValue = null;
List<TreeNode> nextList = new ArrayList<>();
for (TreeNode node : list) {
if (node.left != null) {
nextList.add(node.left);
}
if (node.right != null) {
nextList.add(node.right);
}
int val = node.val;
//判断奇偶数是否符合
if (isEven) {
if (val % 2 == 0) {
return false;
}
if (lastValue == null) {
lastValue = val;
continue;
}
if (val <= lastValue) {
return false;
}
lastValue = val;
continue;
}
if (val % 2 != 0) {
return false;
}
if (lastValue == null) {
lastValue = val;
continue;
}
if (val >= lastValue) {
return false;
}
lastValue = val;
}
return isEvenOddTree(nextList, !isEven);
}