【JZOJ4970】B 题解

题目出自C_SUNSHINE、Newnode

题目大意

  给定 N , M , K N, M, K N,M,K,数组 a [ N ] [ M ] , b [ N ] a[N][M], b[N] a[N][M],b[N]。定义
c [ i ] = ∑ j = 0 N − 1 a [ j ] [   b [ i j   m o d   N ]   ] c[i]=\sum_{j=0}^{N-1}a[j][~b[ij \bmod N]~] c[i]=j=0N1a[j][ b[ijmodN] ]

  求第 K K K 大的 c [ i ] c[i] c[i]

   N ≤ 250000 N \le 250000 N250000 N N N 为质数, 2 ≤ m ≤ 4 2 \le m \le 4 2m4
   0 ≤ a i j < 1024 ,   0 ≤ b < m 0 \le a_{ij} < 1024,\ 0 \le b < m 0aij<1024, 0b<m

题解

  观察式子,发现有两个不好做的地方:

  • i i i 是乘上 j j j
  • b b b 数组是下标。

  所以我们要做一些变化。

  对于 i = 0 i=0 i=0 j = 0 j=0 j=0,特殊处理掉,以下不考虑。
  那么剩下的 i i i j j j 都可以用原根的幂来表示了,这样就将乘法化成加法了。设 i = g x , j = g y i=g^x, j=g^y i=gxj=gy
  于是原式变成
c [ x ] = ∑ y = 1 N − 1 a [ y ] [   b [ ( x + y )   m o d   ( N − 1 ) ]   ] c[x]=\sum_{y=1}^{N-1}a[y][~b[(x+y) \bmod (N-1)]~] c[x]=y=1N1a[y][ b[(x+y)mod(N1)] ]

  对 a a a 数组的每一列单独考虑。比如说我们考虑到第 i i i 列,那我们定义一个 B B B 数组: B [ j ] = ( b [ j ] = = i ) B[j]=(b[j]==i) B[j]=(b[j]==i)
  这样原式变成
c i [ x ] = ∑ y = 1 N − 1 a [ y ] [ i ] ⋅ B [ ( x + y )   m o d   ( N − 1 ) ] c_i[x]=\sum_{y=1}^{N-1}a[y][i] \cdot B[(x+y) \bmod (N-1)] ci[x]=y=1N1a[y][i]B[(x+y)mod(N1)]

  把 a a a 数组倒过来,即把 a [ y ] [ i ] a[y][i] a[y][i] 放到 a [ − y ] [ i ] a[-y][i] a[y][i] 的位置上:
c i [ x ] = ∑ y = 1 N − 1 a [ − y ] [ i ] ⋅ B [ x + y ] c_i[x]=\sum_{y=1}^{N-1}a[-y][i] \cdot B[x+y] ci[x]=y=1N1a[y][i]B[x+y]
  这样就是个循环卷积了。

代码

#include<cmath>
#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;

typedef long long LL;

const int maxn=3e5+5, maxlen=6e5+5;
const double pi=acos(-1), eps=1e-3;

struct Z{
	double x,y;
	Z(double X=0, double Y=0) {x=X, y=Y;}
};
Z operator +(const Z &a,const Z &b) {return Z(a.x+b.x,a.y+b.y);}
Z operator -(const Z &a,const Z &b) {return Z(a.x-b.x,a.y-b.y);}
Z operator *(const Z &a,const Z &b) {return Z(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}

int n,m,k,a[maxn][5],b[maxn];
LL c[maxn];

int len,rv[maxlen];
Z W[maxlen],B[maxlen],A[maxlen],tp[maxlen];
void DFT(Z *a,int sig)
{
	fo(i,0,len-1) tp[rv[i]]=a[i];
	for(int m=2; m<=len; m<<=1)
	{
		int hal=m>>1;
		fo(j,0,hal-1)
		{
			Z w=W[(j*(len/m)*sig+len)%len];
			for(int k=j; k<len; k+=m)
			{
				Z u=tp[k], v=tp[k+hal]*w;
				tp[k]=u+v;
				tp[k+hal]=u-v;
			}
		}
	}
	fo(i,0,len-1) a[i]=tp[i];
}
void FFT(Z *a,Z *b)
{
	DFT(a,1), DFT(b,1);
	fo(i,0,len-1) a[i]=a[i]*b[i];
	DFT(a,-1);
	fo(i,0,len-1) a[i].x/=len;
}

int G[22]={5,127,509,2039,8191,32749,65521,131071,249989,249973,249971,2,3,2,7,17,2,17,3,2,5,6};
int gx[maxn];
void Pre()
{
	int g;
	fo(i,0,10) if (G[i]==n) {g=G[i+11]; break;} //本题加上样例共11个数据,每个n已列出
	gx[0]=1;
	fo(i,1,n) gx[i]=gx[i-1]*g%n;
	for(len=1; len<2*n; len<<=1);
	for(int i=0, j, k, l; i<len; rv[k]=i++)
	{
		W[i]=Z(cos(i*2*pi/len),sin(i*2*pi/len));
		for(j=i, k=0, l=1; l<len; j>>=1, l<<=1) k=(k<<1)+(j&1);
	}
}

int main()
{
	scanf("%d %d %d",&n,&m,&k);
	fo(j,0,m-1)
		fo(i,0,n-1) scanf("%d",&a[i][j]);
	fo(i,0,n-1) scanf("%d",&b[i]);
	
	Pre();
	
	fo(i,0,n-1) c[i]+=a[0][b[0]];
	fo(j,1,n-1) c[0]+=a[j][b[0]];
	
	fo(i,0,m-1)
	{
		fo(j,0,len-1) A[j]=B[j]=Z(0,0);
		fo(j,1,n-1)
		{
			A[j-1]=Z(a[gx[n-j]][i],0);
			B[j]=(b[gx[j]]==i) ?Z(1,0) :Z(0,0) ;
		}
		FFT(A,B);
		fo(j,0,len-1) c[gx[j%(n-1)]]+=(LL)(A[j].x+0.5);
	}
	
	sort(c,c+n);
	printf("%lld\n",c[n-k]);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值