CRC校验

本文介绍循环冗余校验码(CRC)的基本原理及其生成过程。CRC是一种用于检测数据传输错误的编码方式,通过特定的生成多项式计算出校验码并附加到原始数据上。文章详细解释了生成多项式的条件以及CRC码的生成步骤。
摘要由CSDN通过智能技术生成

    循环冗余校验码CRC)的基本原:在K信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码也叫(NK)码。对于一个给定的(NK)码,可以证明存在一个最高次幂N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。 校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*xR次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*XR次方除以生成多项式G(x)得到的余数就是校验码。

    生成多项式应满足以下条件:

a、生成多项式的最高位和最低位必须为1

b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0

c、不同位发生错误时,应该使余数不同。

d、对余数继续做除,应使余数循环。

 

        CRC校验码位数

CRC校验码位数 = 生成多项式位数 - 1。注意有些生成多项式的简记式中将生成多项式的最高位1省略了。

 

 

   生成步骤

1、将x的最高次幂为R的生成多项式G(x)转换成对应的R+1位二进制数。

2、将信息码左移R位,相当于对应的信息多项式C(x)*xR次方。

3、用生成多项式(二进制数)对信息码做除,得到R位的余数。

4、将余数拼到信息码左移后空出的位置,得到完整的CRC码。




具体例子:

 

    生成多项式为G(x)=x^5+x^4+x+1, 可转换为二进制数码110011

而发送信息位 11001,可转换为数据多项式为C(x)=x^4+x^3+1



    1001即为所得到的后四位码。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值