半监督学习
文章平均质量分 88
'Themis'
这个作者很懒,什么都没留下…
展开
-
半监督-SelfMatch-论文阅读笔记
阅读背景SimCLR在2020年2月第一次挂在arxiv上,被ICML 2020接收FixMatch在2020年1月第一次挂在arxiv上,被NIPS 2020接收概括总结SelfMatch方法和 FixMatch 都是NIPS 2020的文章,前者是work shop,后者是conference。核心方法,是将自监督的contrastive learning 和 半监督的 consistency regularization 结合,具体是SimCLR+FixMatch 的流程:首先在u原创 2021-05-25 19:56:38 · 834 阅读 · 0 评论 -
半监督领域论文笔记——Billion-scale semi-supervised learning for image classification
发表时间2019年所属领域半监督学习文章方法主要目的借助非标注数据,提升现有模型效果方法概述采用了teacher/student的学习机制,借助了billion级别的unable data和相对小数量级的label data,提升了当前已有模型在图像分类任务上的效果提出背景2018年,也是Facebook,提出了weakly supervised方向的研究“Exploring the Limits of Weakly Supervised Pretraining”,采原创 2020-10-22 23:05:41 · 722 阅读 · 0 评论 -
半监督学习方向——SimCLR论文阅读笔记
参考资料:https://medium.com/%E8%BB%9F%E9%AB%94%E4%B9%8B%E5%BF%83/deep-learning-self-supervised-learning%E7%9A%84%E6%96%B0%E9%AB%98%E5%BA%A6-%E5%BE%9Esimclr%E8%AA%8D%E8%AD%98ssl%E8%88%87contrastive-learning-5dad7a7097e1原创 2020-09-14 19:28:49 · 475 阅读 · 0 评论