「土」巨石滚滚
帕秋莉掌握了一种土属性魔法 她使用这种魔法建造了一个大型的土球,并让其一路向下去冲撞障碍 土球有一个稳定性x,如果x < 0,它会立刻散架 每冲撞一个障碍,土球会丧失ai的稳定性,冲撞之后,又会从障碍身上回馈bi的稳定性 帕秋莉想知道,如果合理的安排障碍的顺序,在保证土球不散架的情况下,是否可以将障碍全部撞毁呢?
输入描述:
输入一个整数T,代表T组数据,每组数据中:
前一行两个整数n , m,表示障碍个数和土球的稳定性
接下来一行两个整数,分别表示障碍的ai和bi
输出描述:
若可以,输出“Yes”(不含引号),否则输出“No”(不含引号)
样例
输入
1
5 50
49 49
52 0
5 10
26 24
70 70
输出
No
备注:
Σn <= 500000, 1<=m<=100000,0<=a,b<=100000
思路:
贪心
如果土球碰到障碍不会碎的话,那么尽量先选取 回复减消耗 更大的障碍
如果可以回血,那么优先选择消耗最小的;
如果回血小于了消耗,那么先选择回血最多的
在上述操作过程中,一旦遇到无法选取的,就可以判断无法满足条件了
AC代码
#include<bits/stdc++.h>
#include<unordered_map>
using namespace std;
#define sc scanf
#define ls rt << 1
#define rs ls | 1
#define Min(x, y) x = min(x, y)
#define Max(x, y) x = max(x, y)
#define ALL(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define MEM(x, b) memset(x, b, sizeof(x))
#define lowbit(x) ((x) & (-x))
#define P2(x) ((x) * (x))
typedef long long ll;
const int mod = 1e8 + 7;
const int MAXN = 1e6 + 10;
const int INF = 0x3f3f3f3f;
ll n,m;
struct node{
ll a,b,c;
}a[MAXN];
int cmp1(node p,node q)
{
return p.c>q.c;
}
int cmp2(node p,node q)
{
return p.a<q.a;
}
int cmp3(node p,node q)
{
return p.b>q.b;
}
int main()
{
int t;
cin>>t;
while(t--)
{
ll sum=0;
cin>>n>>m;
for(int i=0;i<n;i++)
{
cin>>a[i].a>>a[i].b;
a[i].c=a[i].b-a[i].a;
if(a[i].c>0) sum++;
}
sort(a,a+n,cmp1);
sort(a,a+sum,cmp2);
sort(a+sum,a+n,cmp3);
int flag=0;
for(int i=0;i<n;i++)
{
if(m<a[i].a)
{
flag=1;
break;
}
m+=a[i].c;
}
if(!flag)cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
}