山峰和山谷

山峰和山谷

FGD小朋友特别喜欢爬山,在爬山的时候他就在研究山峰和山谷。为了能够对旅程有一个安排,他想知道山峰和山谷的数量。给定一个地图,为FGD想要旅行的区域,地图被分为 n×n的网格,每个格子 (i,j)的高度 w(i,j)是给定的。若两个格子有公共顶点,那么它们就是相邻的格子,如与 (i,j)相邻的格子有(i−1,j−1),(i−1,j),(i−1,j+1),(i,j−1),(i,j+1),(i+1,j−1),(i+1,j),(i+1,j+1)。我们定义一个格子的集合 S为山峰(山谷)当且仅当:S 的所有格子都有相同的高度。S的所有格子都连通。对于 s属于 S,与 s相邻的 s′不属于 S,都有 ws>ws′(山峰),或者 ws<ws′(山谷)。
如果周围不存在相邻区域,则同时将其视为山峰和山谷。
你的任务是,对于给定的地图,求出山峰和山谷的数量,如果所有格子都有相同的高度,那么整个地图即是山峰,又是山谷。

输入格式
第一行包含一个正整数 n,表示地图的大小。
接下来一个 n×n 的矩阵,表示地图上每个格子的高度 w。

输出格式
共一行,包含两个整数,表示山峰和山谷的数量。

数据范围
1≤n≤1000
0≤w≤109
输入样例1:
5
8 8 8 7 7
7 7 8 8 7
7 7 7 7 7
7 8 8 7 8
7 8 8 8 8
输出样例1:
2 1
输入样例2:
5
5 7 8 3 1
5 5 7 6 6
6 6 6 2 8
5 7 2 5 8
7 1 0 1 7
输出样例2:
3 3

Solutions

代码读取网格 n 的维度和网格本身作为一组整数。 网格表示为整数 g 的二维数组,其中每个整数表示网格中单元格的高度。

bfs 函数由 main 函数调用,并使用广度优先搜索 (BFS) 算法将峰或谷中的所有单元格标记为已访问。 具体来说,该函数将作为峰或谷一部分的单元 (x, y) 的坐标作为输入,然后使用队列从该单元开始执行 BFS。 对于 BFS 期间访问的每个单元格,该函数在二维数组 st 中将单元格标记为已访问,并更新两个布尔变量 has_higher 和 has_lower 以分别指示峰或谷是否具有更高或更低高度的单元格。

在 main 函数中,代码初始化一个二维数组 st 以跟踪访问过哪些单元格,然后遍历网格中的每个单元格。 对于尚未访问过的每个单元格,该函数调用 bfs 函数将峰值或谷值中的所有单元格标记为已访问,并更新两个计数器峰值和谷值以跟踪网格中峰值和谷值的数量。

最后,main 函数输出 peak 和 valley 的值,分别表示网格中峰和谷的数量。

#include <bits/stdc++.h>

using namespace std;

typedef pair<int, int> PII;

const int N = 1010;

int n;
int g[N][N];
bool st[N][N];

void bfs(int x, int y, bool &has_higher, bool &has_lower) {
    queue<PII> q;
    q.push(make_pair(x, y));
    st[x][y] = true;
    while (q.size()) {
        PII t = q.front();
        q.pop();
        for (int i = t.first - 1; i <= t.first + 1; i ++ ) {
            for (int j = t.second - 1; j <= t.second + 1; j ++ ) {
                if (i < 0 || i >= n || j < 0 || j >= n) continue;
                if (g[i][j] != g[t.first][t.second]) {
                    if (g[i][j] > g[t.first][t.second]) has_higher = true;
                    else has_lower = true;
                }else if (!st[i][j]) {
                    q.push(make_pair(i, j));
                    st[i][j] = true;
                }
            }
        }
    }
}

int main() {
    cin.tie(nullptr);
    cout.tie(nullptr);
    ios::sync_with_stdio(false);
    cin >> n;
    for (int i = 0; i < n; i ++ ) {
        for (int j = 0; j < n; j ++ ) {
            cin >> g[i][j];
        }
    }
    int peak = 0, valley = 0;
    for (int i = 0; i < n; i ++ ) {
        for (int j = 0; j < n; j ++ ) {
            if (!st[i][j]) {
                bool has_higher = false, has_lower = false;
                bfs(i, j, has_higher, has_lower);
                if (!has_higher) peak ++;
                if (!has_lower) valley ++;
            }
        }
    }
    cout << peak << ' ' << valley << endl;
    return 0;
}

### BFS算法山峰山谷地形中的应用 广度优先搜索(BFS)是一种用于遍历或搜索树或图的算法。该方法同样适用于解决有关山峰山谷的问题,其中地图可以表示为网格形式。 对于给定的地图,其被划分为 \(n \times n\) 的网格,每个格子具有特定的高度值 \(w(i, j)\),可以通过BFS来识别所有的山峰山谷[^1]。具体而言: - **连通性判断**:通过BFS可以从任意一个未访问过的节点出发,找到所有与之相连且高度相同的位置形成的一个连通块。 - **边界条件处理**:一旦确定了一个连通块之后,就需要检查这个连通块周边的情况。如果发现周围的所有相邻位置要么超出边界范围,要么高度低于当前连通块,则认为这是一个山峰;反之,若高于当前连通块,则是一个山谷[^2]。 下面给出一段Python代码实现上述逻辑: ```python from collections import deque def bfs(heights, visited, i, j): queue = deque([(i, j)]) height = heights[i][j] region = [] while queue: x, y = queue.popleft() if not (0 <= x < len(heights)) or not (0 <= y < len(heights[0])): continue if visited[x][y]: continue if heights[x][y] != height: continue visited[x][y] = True region.append((x,y)) directions = [(0,-1), (-1,-1), (-1,0), (-1,1), (0,1), (1,1), (1,0), (1,-1)] for dx, dy in directions: nx, ny = x + dx, y + dy queue.append((nx, ny)) return region def count_peaks_and_valleys(heights): n = len(heights) m = len(heights[0]) visited = [[False]*m for _ in range(n)] peaks = valleys = 0 for i in range(n): for j in range(m): if not visited[i][j]: region = bfs(heights, visited, i, j) is_peak = all( any(0<=x<len(heights) and 0<=y<len(heights[0]) and heights[x][y]<heights[i][j] for x,y in ((a+dx,b+dy) for a,b in region for dx,dy in [(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)])) ) is_valley = all( any(0<=x<len(heights) and 0<=y<len(heights[0]) and heights[x][y]>heights[i][j] for x,y in ((a+dx,b+dy) for a,b in region for dx,dy in [(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)])) ) if is_peak and is_valley: peaks += 1 valleys += 1 elif is_peak: peaks += 1 elif is_valley: valleys += 1 return peaks, valleys ``` 此函数`count_peaks_and_valleys()`接收二维列表作为输入参数,代表不同高度的地貌数据,并返回两个整数分别指示存在的山峰数量以及山谷数量[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值