SpringBoot+Sharding-JDBC操作分库分表(超超超详细)

什么是Sharding-JDBC?什么是分库分表?为什么要分库分表?

可查看本篇博客:

Apache——ShardingSphere(分布式数据库中间件、对于分库分表的操作利器)

Sharding-JDBC操作水平分表

一、搭建环境

  1. 基础环境:SpringBoot2.2.1 + MybatisPlus + Sharding-JDBC + Druid连接池
  2. 创建SpringBoot工程
     

  3. 修改SpringBoot项目版本为2.2.1
     

  4. 引入相关依赖
     
        <dependencies>
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-starter</artifactId>
            </dependency>
    
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-starter-test</artifactId>
                <scope>test</scope>
                <exclusions>
                    <exclusion>
                        <groupId>org.junit.vintage</groupId>
                        <artifactId>junit-vintage-engine</artifactId>
                    </exclusion>
                </exclusions>
            </dependency>
    
            <!-- Druid连接池 -->
            <dependency>
                <groupId>com.alibaba</groupId>
                <artifactId>druid</artifactId>
                <version>1.1.20</version>
            </dependency>
    
            <!-- Mysql驱动依赖 -->
            <dependency>
                <groupId>mysql</groupId>
                <artifactId>mysql-connector-java</artifactId>
            </dependency>
    
            <!-- MybatisPlus -->
            <dependency>
                <groupId>com.baomidou</groupId>
                <artifactId>mybatis-plus-boot-starter</artifactId>
                <version>3.0.5</version>
            </dependency>
    
            <!-- Sharding-JDBC -->
            <dependency>
                <groupId>org.apache.shardingsphere</groupId>
                <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
                <version>4.0.0-RC1</version>
            </dependency>
    
            <!-- lombok -->
            <dependency>
                <groupId>org.projectlombok</groupId>
                <artifactId>lombok</artifactId>
            </dependency>
    
        </dependencies>

     

二、按照水平分表的方式创建数据库和数据库表

  1. 创建数据库goods_db;
  2. 在goods_db中创建表goods_1、goods_2;
  3. 约定规则,如果添加商品id是偶数把数据加入goods_1,如果是偶数把数据加入goods_2;
  4. 结构展示
     

三、编写代码

创建Goods实体类

package com.ws.shardingjdbcdemo.pojo;

import lombok.Data;

//@Data注解是lombok的注解,简化实体类编写,自动生成get/set以及toString等方法
@Data
public class Goods {
    private Long gid;
    private String gname;
    private Long userId;
    private String gstatus;
}

 @Data注解生成的内容如下:

创建GoodsMapper

package com.ws.shardingjdbcdemo.mapper;

import com.baomidou.mybatisplus.core.mapper.BaseMapper;
import com.ws.shardingjdbcdemo.pojo.Goods;
import org.springframework.stereotype.Repository;

@Repository
public interface GoodsMapper extends BaseMapper<Goods> {

}

启动类配置扫描Mapper包

package com.ws.shardingjdbcdemo;

import org.mybatis.spring.annotation.MapperScan;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
//扫描包
@MapperScan("com.ws.shardingjdbcdemo.mapper")
public class ShardingjdbcdemoApplication {

    public static void main(String[] args) {
        SpringApplication.run(ShardingjdbcdemoApplication.class, args);
    }

}

四、application.properties配置Sharding-JDBC

# 配置Sharding-JDBC的分片策略
# 配置数据源,给数据源起名g1,g2...此处可配置多数据源
spring.shardingsphere.datasource.names=g1

# 配置数据源具体内容————————包含  连接池,  驱动,             地址,   用户名,    密码
# 由于上面配置数据源只有g1因此下面只配置g1.type,g1.driver-class-name,g1.url,g1.username,g1.password
spring.shardingsphere.datasource.g1.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.g1.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.g1.url=jdbc:mysql://localhost:3306/goods_db?characterEncoding=utf-8&useUnicode=true&useSSL=false&serverTimezone=UTC
spring.shardingsphere.datasource.g1.username=root
spring.shardingsphere.datasource.g1.password=123456

# 配置表的分布,表的策略
spring.shardingsphere.sharding.tables.goods.actual-data-nodes=g1.goods_$->{1..2}

# 指定goods表 主键gid 生成策略为 SNOWFLAKE
spring.shardingsphere.sharding.tables.goods.key-generator.column=gid
spring.shardingsphere.sharding.tables.goods.key-generator.type=SNOWFLAKE

# 指定分片策略 约定gid值是偶数添加到goods_1表,如果gid是奇数添加到goods_2表
spring.shardingsphere.sharding.tables.goods.table-strategy.inline.sharding-column=gid
spring.shardingsphere.sharding.tables.goods.table-strategy.inline.algorithm-expression=goods_$->{gid % 2 + 1}

# 打开sql输出日志
spring.shardingsphere.props.sql.show=true

PS:此类配置文件在ShardingShpere官网中可找到,不必担心记不住。

五、编写测试代码

 ShardingjdbcdemoApplicationTests.Java代码:

package com.ws.shardingjdbcdemo;

import com.ws.shardingjdbcdemo.mapper.GoodsMapper;
import com.ws.shardingjdbcdemo.pojo.Goods;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

@SpringBootTest
class ShardingjdbcdemoApplicationTests {

    @Autowired
    GoodsMapper goodsMapper;

    @Test
    void addGoods() {
        Goods good = new Goods();
        good.setGname("小米手机");
        good.setUserId(100L);
        good.setGstatus("已发布");
        goodsMapper.insert(good);
    }

}

启动测试方法,果然报错了:

 大概意思就是说,不允许有两个相同名称的Bean。

 解决方案:

    spring.main.allow-bean-definition-overriding=true

将此配置在application.properties中

# 配置Sharding-JDBC的分片策略
# 配置数据源,给数据源起名g1,g2...此处可配置多数据源
spring.shardingsphere.datasource.names=g1

# 配置允许后面的Bean覆盖前面名称重复的Bean
spring.main.allow-bean-definition-overriding=true

# 配置数据源具体内容————————包含  连接池,  驱动,             地址,   用户名,    密码
# 由于上面配置数据源只有g1因此下面只配置g1.type,g1.driver-class-name,g1.url,g1.username,g1.password
spring.shardingsphere.datasource.g1.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.g1.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.g1.url=jdbc:mysql://localhost:3306/goods_db?characterEncoding=utf-8&useUnicode=true&useSSL=false&serverTimezone=UTC
spring.shardingsphere.datasource.g1.username=root
spring.shardingsphere.datasource.g1.password=123456

# 配置表的分布,表的策略
spring.shardingsphere.sharding.tables.goods.actual-data-nodes=g1.goods_$->{1..2}

# 指定goods表 主键gid 生成策略为 SNOWFLAKE
spring.shardingsphere.sharding.tables.goods.key-generator.column=gid
spring.shardingsphere.sharding.tables.goods.key-generator.type=SNOWFLAKE

# 指定分片策略 约定gid值是偶数添加到goods_1表,如果gid是奇数添加到goods_2表
spring.shardingsphere.sharding.tables.goods.table-strategy.inline.sharding-column=gid
spring.shardingsphere.sharding.tables.goods.table-strategy.inline.algorithm-expression=goods_$->{gid % 2 + 1}

# 打开sql输出日志
spring.shardingsphere.props.sql.show=true

再次启动测试方法成功插入数据并在控制台打印出SQL语句:

 goods_1表:

 goods_2表:

PS:可看到gid为奇数,在goods_2中插入了数据,goods_1中无。 

 控制台:

 接下来测试一下是否真正按照奇数偶数来分表插入了。

修改addGoods()方法的代码:

    @Test
    void addGoods() {
        for (int i = 0; i < 10; i++){
            Goods good = new Goods();
            good.setGname("小米手机" + i);
            good.setUserId(100L);
            good.setGstatus("已发布");
            goodsMapper.insert(good);
        }
    }

执行结果:

goods_1表:

goods_2表:

 可看到,完全按照奇数插入2表,偶数插入1表的规则。

测试查询:

1. 编写getGood()方法

    @Test
    void getGood(){
        QueryWrapper<Goods> queryWrapper = new QueryWrapper<>();
        queryWrapper.eq("gid",479688915029065729L);
        Goods good = goodsMapper.selectOne(queryWrapper);
        System.out.println(good.toString());
    }

2. 执行getGood(),成功打印出gid = 479688915029065729 的数据信息

以上就是Sharding-JDBC对水平分表的操作。若有问题可留言评论,旨在共同学习,共同进步!

上面讲述了使用Sharding-JDBC如何对水平分表的操作,接下来玩玩水平分库分表操作。

Sharding-JDBC操作水平分库+水平分表

1. 创建两个数据库goods_db_1和goods_db_2,每个数据库中均包含两个表goods_1和goods_2,goods_1和goods_2和上述分表的结构一样。

2. 配置application.properties

# 配置Sharding-JDBC的分片策略
# 配置数据源,给数据源起名g1,g2...此处可配置多数据源
spring.shardingsphere.datasource.names=g1,g2

# 配置允许一个实体类映射多张表
spring.main.allow-bean-definition-overriding=true

# 配置数据源具体内容————————包含  连接池,  驱动,             地址,   用户名,    密码
#                                 g1配置g1.type,g1.driver-class-name,g1.url,g1.username,g1.password
spring.shardingsphere.datasource.g1.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.g1.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.g1.url=jdbc:mysql://localhost:3306/goods_db_1?characterEncoding=utf-8&useUnicode=true&useSSL=false&serverTimezone=UTC
spring.shardingsphere.datasource.g1.username=root
spring.shardingsphere.datasource.g1.password=123456

# 配置数据源具体内容————————包含  连接池,  驱动,             地址,   用户名,    密码
#                                 g2配置g2.type,g2.driver-class-name,g2.url,g2.username,g2.password
spring.shardingsphere.datasource.g2.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.g2.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.g2.url=jdbc:mysql://localhost:3306/goods_db_2?characterEncoding=utf-8&useUnicode=true&useSSL=false&serverTimezone=UTC
spring.shardingsphere.datasource.g2.username=root
spring.shardingsphere.datasource.g2.password=123456

# 配置数据库的分布,表的分布
# m1:goods_1 goods_2; m2:goods_1,goods_2;
spring.shardingsphere.sharding.tables.goods.actual-data-nodes=g$->{1..2}.goods_$->{1..2}

# 指定goods表 主键gid 生成策略为 SNOWFLAKE
spring.shardingsphere.sharding.tables.goods.key-generator.column=gid
spring.shardingsphere.sharding.tables.goods.key-generator.type=SNOWFLAKE

# 指定数据库分片策略 约定user_id值是偶数添加到goods_db_1中,奇数添加到goods_db_2中
spring.shardingsphere.sharding.tables.goods.database-strategy.inline.sharding-column=user_id
spring.shardingsphere.sharding.tables.goods.database-strategy.inline.algorithm-expression=g$->{user_id % 2 + 1}

# 指定表分片策略 约定gid值是偶数添加到goods_1表,如果gid是奇数添加到goods_2表
spring.shardingsphere.sharding.tables.goods.table-strategy.inline.sharding-column=gid
spring.shardingsphere.sharding.tables.goods.table-strategy.inline.algorithm-expression=goods_$->{gid % 2 + 1}

# 打开sql输出日志
spring.shardingsphere.props.sql.show=true

 3. 编写测试方法addGoods02()

    @Test
    void addGoods02(){
        Goods good = new Goods();
        good.setGname("华为手机");
        good.setUserId(100L);
        good.setGstatus("已发布");
        goodsMapper.insert(good);
    }

 4. 执行addGoods02()方法

     由于我们的user_id设置为100L,为偶数,根据我们的初衷,偶数存入goods_db_1中。

 5. 执行结果

     控制台sql语句显示与我们所期望的一致。

      数据库结果也与我们所期望一致。 

      剩下批量插入,查询,修改,删除操作大家可以自行尝试一下。

Sharding-JDBC操作垂直分库+水平分库+水平分表

背景描述:

      在  分库分表&分库分表利器 文章中了解到什么是垂直分库分表、水平分库分表,为什么分库分表;在咱们实际项目中,垂直分库后会有多个数据库,每个数据库中有属于自己的表和公共表(操作公共表在本节后面会讲述)。

      上面章节我们做到了用Sharding-JDBC操作水平分库分表,在以上基础上,我们还有一个数据库user_db,里面有一张t_user表,用来存放用户信息,这是在咱们一个项目中有多个数据库,每个数据库又有不同的表。 

数据库结构及t_user表结构如下:

一、需求分析

      在我们项目中有以上这么多数据库和表,当我们操作t_user表时,快速准确操作到userdb数据库 > t_user表。

二、实现需求

     1. 配置application.properties文件

     在上面水平分库分表的基础上编写关于user_db和t_user表的配置。

# 配置Sharding-JDBC的分片策略
# 配置数据源,给数据源起名g1,g2...此处可配置多数据源
spring.shardingsphere.datasource.names=g1,g2,u0

# 配置允许一个实体类映射多张表
spring.main.allow-bean-definition-overriding=true

# 配置g1数据源具体内容————————包含  连接池,  驱动,             地址,   用户名,    密码
#                                 g1配置g1.type,g1.driver-class-name,g1.url,g1.username,g1.password
spring.shardingsphere.datasource.g1.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.g1.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.g1.url=jdbc:mysql://localhost:3306/goods_db_1?characterEncoding=utf-8&useUnicode=true&useSSL=false&serverTimezone=UTC
spring.shardingsphere.datasource.g1.username=root
spring.shardingsphere.datasource.g1.password=123456

# 配置g2数据源具体内容————————包含  连接池,  驱动,             地址,   用户名,    密码
#                                 g2配置g2.type,g2.driver-class-name,g2.url,g2.username,g2.password
spring.shardingsphere.datasource.g2.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.g2.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.g2.url=jdbc:mysql://localhost:3306/goods_db_2?characterEncoding=utf-8&useUnicode=true&useSSL=false&serverTimezone=UTC
spring.shardingsphere.datasource.g2.username=root
spring.shardingsphere.datasource.g2.password=123456

# 配置u0数据源具体内容————————包含  连接池,  驱动,             地址,   用户名,    密码
#                                 u0配置u0.type,u0.driver-class-name,u0.url,u0.username,u0.password
spring.shardingsphere.datasource.u0.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.u0.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.u0.url=jdbc:mysql://localhost:3306/user_db?characterEncoding=utf-8&useUnicode=true&useSSL=false&serverTimezone=UTC
spring.shardingsphere.datasource.u0.username=root
spring.shardingsphere.datasource.u0.password=123456

#配置垂直分库t_user的策略
spring.shardingsphere.sharding.tables.t_user.actual-data-nodes=u0.t_user
spring.shardingsphere.sharding.tables.t_user.key-generator.column=user_id
spring.shardingsphere.sharding.tables.t_user.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_user.table-strategy.inline.sharding-column=user_id
#由于只有一张表,因此在此直接写表明,不需要像水平分多个表那样写策略
spring.shardingsphere.sharding.tables.t_user.table-strategy.inline.algorithm-expression=t_user

# 配置数据库的分布,表的分布
# g1:goods_1 goods_2; g2:goods_1,goods_2;
spring.shardingsphere.sharding.tables.goods.actual-data-nodes=g$->{1..2}.goods_$->{1..2}

# 指定goods表 主键gid 生成策略为 SNOWFLAKE
spring.shardingsphere.sharding.tables.goods.key-generator.column=gid
spring.shardingsphere.sharding.tables.goods.key-generator.type=SNOWFLAKE

# 指定数据库分片策略 约定user_id值是偶数添加到goods_db_1中,奇数添加到goods_db_2中
spring.shardingsphere.sharding.tables.goods.database-strategy.inline.sharding-column=user_id
spring.shardingsphere.sharding.tables.goods.database-strategy.inline.algorithm-expression=g$->{user_id % 2 + 1}

# 指定表分片策略 约定gid值是偶数添加到goods_1表,如果gid是奇数添加到goods_2表
spring.shardingsphere.sharding.tables.goods.table-strategy.inline.sharding-column=gid
spring.shardingsphere.sharding.tables.goods.table-strategy.inline.algorithm-expression=goods_$->{gid % 2 + 1}

# 打开sql输出日志
spring.shardingsphere.props.sql.show=true

     2. 编写代码

        User.java

package com.ws.shardingjdbcdemo.pojo;

import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;

@Data
@TableName("t_user")
public class User {
    private Long userId;
    private String username;
    private String ustatus;
}

        UserMapper.java

package com.ws.shardingjdbcdemo.mapper;

import com.baomidou.mybatisplus.core.mapper.BaseMapper;
import com.ws.shardingjdbcdemo.pojo.User;
import org.springframework.stereotype.Repository;

@Repository
public interface UserMapper extends BaseMapper<User> {

}

        Tests.java

    @Test
    void addUser(){
        User user = new User();
        user.setUsername("琳妹妹");
        user.setUstatus("0");
        userMapper.insert(user);
    }

    @Test
    void getUser(){
        QueryWrapper<User> queryWrapper = new QueryWrapper<>();
        //此处请填写自己程序生成的ID
        queryWrapper.eq("user_id",100L);
        User good = userMapper.selectOne(queryWrapper);
        System.out.println(good.toString());
    }

三、测试及结果

addUser()结果:

  getUser结果:

 Sharding-JDBC操作公共表

      背景描述:

        在项目中一般会有一些表的内容是固定的,或者说是很少修改的表,但是又经常跟这些表关联查询,例如一些状态信息。一般在我们项目中这种表会存放在我们各个数据库,所以称为公共表。

        在上面章节我们使用Sharding-JDBC操作了垂直分库+水平分库+水平分表,假设现在在我们的各个数据库中均有一张公共表t_dict。

      数据库&表结构:

      需求:

            操作公共表时,例如增加和删除操作时,会修改所有数据库中的这张表。

      实现:

          1、在上章节基础上编写配置 application.properties(配置公共表部分

# 配置Sharding-JDBC的分片策略
# 配置数据源,给数据源起名g1,g2...此处可配置多数据源
spring.shardingsphere.datasource.names=g1,g2,u0

# 配置允许一个实体类映射多张表
spring.main.allow-bean-definition-overriding=true

# 配置g1数据源具体内容————————包含  连接池,  驱动,             地址,   用户名,    密码
#                                 g1配置g1.type,g1.driver-class-name,g1.url,g1.username,g1.password
spring.shardingsphere.datasource.g1.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.g1.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.g1.url=jdbc:mysql://localhost:3306/goods_db_1?characterEncoding=utf-8&useUnicode=true&useSSL=false&serverTimezone=UTC
spring.shardingsphere.datasource.g1.username=root
spring.shardingsphere.datasource.g1.password=123456

# 配置g2数据源具体内容————————包含  连接池,  驱动,             地址,   用户名,    密码
#                                 g2配置g2.type,g2.driver-class-name,g2.url,g2.username,g2.password
spring.shardingsphere.datasource.g2.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.g2.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.g2.url=jdbc:mysql://localhost:3306/goods_db_2?characterEncoding=utf-8&useUnicode=true&useSSL=false&serverTimezone=UTC
spring.shardingsphere.datasource.g2.username=root
spring.shardingsphere.datasource.g2.password=123456

# 配置u0数据源具体内容————————包含  连接池,  驱动,             地址,   用户名,    密码
#                                 u0配置u0.type,u0.driver-class-name,u0.url,u0.username,u0.password
spring.shardingsphere.datasource.u0.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.u0.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.u0.url=jdbc:mysql://localhost:3306/user_db?characterEncoding=utf-8&useUnicode=true&useSSL=false&serverTimezone=UTC
spring.shardingsphere.datasource.u0.username=root
spring.shardingsphere.datasource.u0.password=123456

# 配置公共表
spring.shardingsphere.sharding.broadcast-tables=t_dict
# 配置公共表ID及生成策略
spring.shardingsphere.sharding.tables.t_dict.key-generator.column=dict_id
spring.shardingsphere.sharding.tables.t_dict.key-generator.type=SNOWFLAKE

#配置垂直分库t_user的策略
spring.shardingsphere.sharding.tables.t_user.actual-data-nodes=u0.t_user
spring.shardingsphere.sharding.tables.t_user.key-generator.column=user_id
spring.shardingsphere.sharding.tables.t_user.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_user.table-strategy.inline.sharding-column=user_id
#由于只有一张表,因此在此直接写表明,不需要像水平分多个表那样写策略
spring.shardingsphere.sharding.tables.t_user.table-strategy.inline.algorithm-expression=t_user

# 配置数据库的分布,表的分布
# g1:goods_1 goods_2; g2:goods_1,goods_2;
spring.shardingsphere.sharding.tables.goods.actual-data-nodes=g$->{1..2}.goods_$->{1..2}

# 指定goods表 主键gid 生成策略为 SNOWFLAKE
spring.shardingsphere.sharding.tables.goods.key-generator.column=gid
spring.shardingsphere.sharding.tables.goods.key-generator.type=SNOWFLAKE

# 指定数据库分片策略 约定user_id值是偶数添加到goods_db_1中,奇数添加到goods_db_2中
spring.shardingsphere.sharding.tables.goods.database-strategy.inline.sharding-column=user_id
spring.shardingsphere.sharding.tables.goods.database-strategy.inline.algorithm-expression=g$->{user_id % 2 + 1}

# 指定表分片策略 约定gid值是偶数添加到goods_1表,如果gid是奇数添加到goods_2表
spring.shardingsphere.sharding.tables.goods.table-strategy.inline.sharding-column=gid
spring.shardingsphere.sharding.tables.goods.table-strategy.inline.algorithm-expression=goods_$->{gid % 2 + 1}

# 打开sql输出日志
spring.shardingsphere.props.sql.show=true

          2、编写代码

                MyDict.java

package com.ws.shardingjdbcdemo.pojo;

import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;

@Data
@TableName("t_dict")
public class MyDict {
    private Long dictId;
    private String dictName;
    private String dictCode;
}

                MyDictMapper.java

package com.ws.shardingjdbcdemo.mapper;

import com.baomidou.mybatisplus.core.mapper.BaseMapper;
import com.ws.shardingjdbcdemo.pojo.MyDict;
import org.springframework.stereotype.Repository;

@Repository
public interface MyDictMapper extends BaseMapper<MyDict> {

}

                Tests.java

    /**
     * 下面是公共表测试方法
     */
    @Test
    void addDict(){
        MyDict myDict = new MyDict();
        myDict.setDictName("已启用");
        myDict.setDictCode("1");
        myDictMapper.insert(myDict);
    }

    @Test
    void deleteDict(){
        QueryWrapper<MyDict> wrapper = new QueryWrapper<>();
        wrapper.eq("dict_id","");
        myDictMapper.delete(wrapper);
    }

          3、测试 

          addDict()方法:

          deleteDict()方法: 

      以上就是通过Apache-ShardingSphere的Sharding-JDBC对分库分表以及公共表的操作,假如您有疑问,可以在下方评论留言,旨在共同学习,共同进步!

 

### 回答1: 我可以为你提供一些关于使用SpringBoot ShardingJDBC MyBatis进行分库分表的建议,例如:1. 使用ShardingSphere框架定义数据库分片策略;2. 使用MyBatis实现MyBatis SQL脚本;3. 使用SpringBoot注解的方式定义数据源和ShardingJDBC的配置。 ### 回答2: 使用SpringBoot ShardingJDBC和MyBatis可以很方便地实现分库分表功能。首先,ShardingJDBC是一个轻量级的数据库中间件,可以将数据分散到不同的数据库实例中,从而实现分库的效果。其次,MyBatis是一个流行的持久层框架,可以通过XML或注解的方式与数据库进行交互。 在使用SpringBoot ShardingJDBC和MyBatis做分库分表时,首先需要配置ShardingJDBC的数据源和分片规则。可以通过编写一个配置类来配置分库分表的规则,例如可以根据某个字段的取值来确定数据应该分散到哪个库或表中。配置完成后,就可以在MyBatis的Mapper接口中直接使用分库分表的数据源,从而实现对不同数据库或表的访问。 在编写Mapper接口时,可以使用MyBatis提供的注解或XML方式来编写SQL语句。在SQL语句中,可以使用ShardingJDBC提供的分片键来实现对特定库或表的访问。例如,在需要查询特定表的数据时,可以使用ShardingJDBC提供的Hint注解将查询操作路由到相应的表上。 总的来说,使用SpringBoot ShardingJDBC和MyBatis可以实现简单、高效的分库分表功能。通过配置ShardingJDBC的分片规则和使用MyBatis编写SQL语句,可以将数据分散到不同的数据库实例和表中,从而实现了水平扩展和负载均衡的效果。这种方式能够帮助我们提高数据库的性能和容量,从而更好地应对大规模的数据存储需求。 ### 回答3: 使用SpringBoot ShardingJDBC MyBatis可以轻松实现分库分表。 首先,ShardingJDBC是一个分库分表的开源框架,它可以通过数据库中间件实现数据的分散存储。而SpringBoot是一个快速构建项目的框架,可以帮助开发者轻松集成各种组件。 使用SpringBoot ShardingJDBC MyBatis进行分库分表,首先需要配置ShardingJDBC的数据源、分片策略以及分表策略。可以通过配置文件或者编程方式来完成配置。配置数据源时,可以指定多个数据库的连接信息,并使用分片策略将数据分配到不同的数据库中。配置分表策略时,可以指定不同的分表规则,将数据根据一定的规则分散存储在不同的表中。 在具体的业务逻辑中,可以使用MyBatis来操作数据库。MyBatis是一个简化数据库访问的持久层框架,通过编写SQL语句和映射文件,可以轻松实现数据库的增删改查操作。 在访问数据库时,ShardingJDBC会根据配置的分片策略和分表策略,自动将数据路由到指定的数据库和表中。开发者不需要关心数据的具体存储位置,只需要使用MyBatis的API进行数据操作即可。 使用SpringBoot ShardingJDBC MyBatis进行分库分表,可以提高数据库的读写性能,增加数据的存储容量,并且可以实现数据的动态扩容和迁移。此外,由于SpringBoot和MyBatis的高度集成,开发者可以更加方便地进行开发和维护。 总之,使用SpringBoot ShardingJDBC MyBatis进行分库分表可以帮助开发者更好地管理数据,提升系统的性能和可扩展性。
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值