关于逆元的求法

$a imes bequiv 1(mod p)​$ ,那么 $a,b​$ 互为对方$mod p​$ 意义下的逆元。

法1:扩展欧几里得

$$
a imes bequiv 1(mod p)
$$

$$
a imes b+k imes p=1
$$

效率 $O(logn)​$

法2:费马小定理/欧拉定理

费马小定理:

若 $p$ 为质数,则有
$$
a^{p-1}equiv 1(mod p)
$$

$$
a^{p-2} imes aequiv1(mod p)
$$

所以 $a^{p-2}$ 就是 $a$ 在$mod p$ 意义下的逆元。

欧拉定理:

若 $a,p$ 互质,则有
$$
a^{varphi(p)}equiv1(mod p)
$$

$$
a^{varphi(p)-1} imes aequiv 1(mod p)
$$

所以 $a^{varphi (p)-1}$ 就是 $a$ 在$mod p$ 意义下的逆元。

效率 $O(logp)$

法3:线性求逆元

($p$ 需要是一个质数)

我们求 $i^{-1}$ 在$mod p$ 意义下的值。
$$
p=k imes i+r
$$
令 $r<i$ 则 $k=frac{p}{i},r=p\%i$ 
$$
k imes i+requiv 0(mod p)
$$
同时除以 $i,r$ 
$$
k imes r^{-1}+i^{-1}equiv 0(mod p)
$$

$$
i^{-1}equiv-k imes r^{-1}(mod p)
$$

$$
i^{-1}equiv-frac{p}{i} imes inv[p\%i]
$$

$$
inv[i]=(p-frac{p}{i}) imes inv[p\%i]
$$

边界:$inv[1]=1$

效率 $O(n)$

法4:中国剩余定理

对于模数非质数的情况,

可以对模数质因数分解,让这个数对每个模数的每个因子求逆元,再用中国剩余定理合并

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荣华富贵8

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值