模数为0则逆元不存在。
x的模m逆存在且唯一的充要条件为x与m互质(gcd(x, m) = 1)
除法逆元有两种计算方法。
费马小定理(模数一定为质数): ( a / b ) % p = a ∗ b p – 2 (a / b) \% p = a * b^{p – 2} % p (a/b)%p=a∗bp–2
如果模数不为质数,但gcd(a, m) == 1,请使用欧拉定理 a ϕ ( m ) ≡ 1 ( m o d m ) a^{\phi(m)} ≡ 1 (mod
[数论]逆元
最新推荐文章于 2024-03-26 09:29:06 发布
本文介绍了模数逆元的概念,强调了x的逆元存在的条件是x与模数m互质。讨论了两种逆元计算方法:费马小定理(适用于模数为质数)和欧拉定理(适用于gcd(a, m) == 1)。当模数不为质数且gcd(a, m) != 1时,提出了使用扩展欧几里得算法。同时,提供了线性求解[1, n]区间逆元的方案。"
90374600,3405753,Flink客户端操作详解:从命令行到RESTful,"['apache flink', 'flink', '客户端', 'restful']
摘要由CSDN通过智能技术生成