- 博客(2)
- 收藏
- 关注
原创 边界感知相关文献阅读:Boundary-aware Context Neural Network forMedical Image Segmentation
医学图像分割可以为进一步的临床分析和疾病诊断提供可靠的依据。卷积神经网络(CNN)的医学图像分割的性能已经显着提高。然而,大多数现有的基于CNN的方法往往产生不令人满意的分割掩模没有准确的对象边界。这是由有限的上下文信息和连续池化和卷积操作后的不充分的鉴别特征映射造成的。由于医学图像具有类内差异大、类间不区分和噪声等特点,提取强有力的上下文信息并聚集有鉴别力的特征进行细粒度分割仍然是一个挑战。在本文中,我们制定了一个。
2024-04-04 22:38:58 1093 1
原创 边界感知相关文献阅读:Shape and Boundary-aware Multi-Branch Model forSemi-supervised Medical Image Segmentation
基于监督学习的医学图像分割模型通常需要大量带标注的训练数据。由于训练数据的不足,往往会导致模型性能的限制,如过拟合,精度低,泛化能力差。然而,这种困境在医学图像分析领域可能只会恶化。医学图像标注通常需要有经验的放射科医生和大量的时间来完成。在这项工作中,我们提出了一种新的形状和边界感知模型的医学图像分割的基础上半监督学习。该模型利用监督损失来学习注释数据和未标记数据的一致性损失。首先,我们提取多尺度特征用于像素分割图(PSM)预测和符号距离图(SDM)回归。
2024-04-03 22:43:04 1500
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人