文章目录
目录
1、Consistency Regularization(一致性正则化)
1、 Feature fusion module (FFM)-特征融合模块
本文目前只着重关注记录文中边界感知的实现方法
文章信息
一、摘要
基于监督学习的医学图像分割模型通常需要大量带标注的训练数据。由于训练数据的不足,往往会导致模型性能的限制,如过拟合,精度低,泛化能力差。然而,这种困境在医学图像分析领域可能只会恶化。医学图像标注通常需要有经验的放射科医生和大量的时间来完成。
在这项工作中,我们提出了一种新的形状和边界感知模型的医学图像分割的基础上半监督学习。该模型利用监督损失来学习注释数据和未标记数据的一致性损失。首先,我们提取多尺度特征用于像素分割图(PSM)预测和符号距离图(SDM)回归。其次,我们将SDM和PSM与正则化输入连接起来,然后将它们送入FFM进行精细分割。SDM和PSM所包含的高层语义有助于非边界区域的准确分割。同时,边界损失的引入对加强边界感知能力也起到了举足轻重的作用。最后,这样的最终结果来自于融合非边界区域和边界区域。最后但并非最不重要的是,为了挖掘未标记的训练数据,我们对模型的三个核心输出(即粗PSM,SDM和细化PSM)施加了一致性约束。通过对两个具有代表性但具有挑战性的医学图像数据集的大量实验,并与已有的代表性方法进行比较,验证了该模型的实用性和优越性。
我们在这项工作中的目标是提高全自动逐像素分割的准确性时,只有有限的注释数据和大量的未注释数据,所以弱监督和交互式方法不是我们的选择。
二、工作的主要贡献归纳
- 我们提出了一种基于V形或U形的医学图像分割模型,采用从粗到细的方法。在粗分割阶段,PSM预测和SDM回归同时执行。在此基础上,在先前分割结果的指导下,进行精细分割。
- 我们利用未标记样本的三个关键输出之间的任务一致性。同时,通过对抗训练,进一步利用了大量的60个未标记数据。
- 我们对BrTS 2019和心房分割2018数据集进行了广泛的实验,以评估我们模型的有效性。实验结果表明,我们的模型优于以前的国家的最先进的方法在大多数评价指标
三、背景方法知识点
1、Consistency Regularization(一致性正则化)
"一致性正则化"通常指的是一种在机器学习,特别是在半监督学习模型中常见的正则化技术,旨在使模型对轻微扰动的输入保持一致的输出。这种方法认为,即使在输入数据中加入小的扰动,模型的预测结果也不应有大的变化。一致性正则化有助于提高模型的泛化能力,尤其是在标注数据稀缺的情况下。
在半监督学习框架中,一致性正则化通常涉及以下几个步骤:
-
无标签数据的扰动:对无标签数据应用轻微扰动,如添加噪声、进行裁剪或旋转等变换。
-
一致性损失:通过比较模型对原始无标签样本和扰动样本的预测,计算一致性损失。目标是使这两个预测尽可能相似。
-
损失函数的整合:在模型训练的损失函数中,整合一致性损失和其他损失(如有监督的损失),共同优化模型。
具体知识点参考:[总结] 半监督学习方法: 一致性正则化(Consistency Regularization)-CSDN博客