自然语言与人工智能:数学视角下的探索
1. 自然语言的数学基础与信息传递
自然语言的概念蕴含着丰富的数学原理,这些原理为人工智能的新发现提供了途径。语言的公理化和逻辑方面的特殊安排,即其半刚性结构,使得周期性在其中占据特殊地位。当我们将自然语言视为一个统一结构,且该结构会受到振动或脉动产生的值的干扰时,结构向灵活或刚性的转变就更容易理解了。这种干扰可能很小,不影响结构的刚性;也可能很剧烈,导致意义的突变。
语言符号化机制承载着不同的运算符,帮助大脑将物理世界的各个方面转化为生物体可理解的信息。为解释这一过程,我们可从“关系”和“函数”的数学概念入手。
关系和函数在数学上有不同的含义,在语言中也扮演着不同的角色。简单来说,“关系”展示了输入和输出之间的联系,而“函数”则表明对于每个提供的输入都有一个对应的输出。所有函数都是关系,但并非所有关系都是函数。
函数可分为以下几种类型:
- 常数函数(Constant Function):表示恒定值。
- 恒等函数(Identity Function):输入和输出相等。
- 线性函数(Linear Function):具有线性关系。
- 绝对值函数(Absolute Value Function):输出为输入的绝对值。
- 反函数(Inverse Functions):与原函数相反的关系。
函数还可根据关系进一步分类:
| 函数类型 | 定义 |
| — | — |
| 一对一函数(One-to-one function 或 Injective function) | 对于集合 P 中的每个元素,在集合 Q 中都有一个不同
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



