医学图像分割与视觉目标跟踪攻击方法的研究进展
1. 医学图像分割中的 MMFA - Net
1.1 多模态数据输入组合效果
在医学图像分割领域,多模态数据的不同输入组合会对分割效果产生影响。以下是不同输入组合对应的 Dice 分数:
| 输入组合 - 输入 1 | 输入组合 - 输入 2 | WT | TC | ET | Avg |
| — | — | — | — | — | — |
| T1 + T2 | T1ce + Flair | 0.921 | 0.870 | 0.823 | 0.871 |
| T1 + Flair | T1ce + T2 | 0.906 | 0.851 | 0.808 | 0.855 |
| T1 + T1ce | T2 + Flair | 0.921 | 0.884 | 0.852 | 0.886 |
从这些数据可以看出,不同的输入组合在不同的评估指标(WT、TC、ET、Avg)下表现有所差异。
1.2 不同模块的效果对比
通过对不同网络和模块的实验,研究了 SPA 模块和 MFA 模块对特征提取和模型预测准确性的影响。
- SPA 模块 :DBN - 1 和 DBN - 2 使用 DBN 提取不同模态图像的特征并比较 SPA 模块的效果;DBN - 3 和 MMFA - Net 使用 DBN 和 FMA 模块并比较 SPA 模块的效果。结果表明,添加 SPA 模块提升了网络对不同模态图像的特征提取能力,增加了模型预测的准确性。
- MFA 模块 :SBN -
超级会员免费看
订阅专栏 解锁全文
17万+

被折叠的 条评论
为什么被折叠?



