39、医学图像分割与视觉目标跟踪攻击方法的研究进展

医学图像分割与视觉目标跟踪攻击方法的研究进展

1. 医学图像分割中的 MMFA - Net

1.1 多模态数据输入组合效果

在医学图像分割领域,多模态数据的不同输入组合会对分割效果产生影响。以下是不同输入组合对应的 Dice 分数:
| 输入组合 - 输入 1 | 输入组合 - 输入 2 | WT | TC | ET | Avg |
| — | — | — | — | — | — |
| T1 + T2 | T1ce + Flair | 0.921 | 0.870 | 0.823 | 0.871 |
| T1 + Flair | T1ce + T2 | 0.906 | 0.851 | 0.808 | 0.855 |
| T1 + T1ce | T2 + Flair | 0.921 | 0.884 | 0.852 | 0.886 |

从这些数据可以看出,不同的输入组合在不同的评估指标(WT、TC、ET、Avg)下表现有所差异。

1.2 不同模块的效果对比

通过对不同网络和模块的实验,研究了 SPA 模块和 MFA 模块对特征提取和模型预测准确性的影响。
- SPA 模块 :DBN - 1 和 DBN - 2 使用 DBN 提取不同模态图像的特征并比较 SPA 模块的效果;DBN - 3 和 MMFA - Net 使用 DBN 和 FMA 模块并比较 SPA 模块的效果。结果表明,添加 SPA 模块提升了网络对不同模态图像的特征提取能力,增加了模型预测的准确性。
- MFA 模块 :SBN -

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值