【C++ 近序数组】

【问题描述】

        对于一个具有 n 个元素的数组,如果可以将其分为两个部分,它的各个部分都是一个非严格有序数组,则我们称这样的数组为近序数组,例如

 数组 1、2、3、4、4、3、2、1是近序数组,数组 4、2、1、2、3、4也是近序数组,而1、5、7、3、9、3就不是近序数组,数组1、3、3、4是有序数组,是近序数组的特例。

 【输入形式】

        输入的第一行为一个整数n,表示数组的元素个数。

        接下来的一行,表示数组的元素。

【输出形式】

        如果给定的数组是近序数组输出Yes,否则输出No。
【样例输入1】

8
1 2 3 4 4 3 2 1
【样例输出1】

Yes
【样例输入2】

3 4 3 4
【样例输出2】

Yes
【样例输入3】

3 4 3 4 3
【样例输出3】

No

【样例说明】
【评分标准】

//给大家解读一下

上网也没找到近序数组的定义

个人认为近序数组就是由两个不一定相同单调性的区间构成的数组

记增区间为↑,减区间为↓,不增不减区间为=,若中间有两数相同为==

则近序数组可以为:

1.↑、↓、=(单纯一直增加,减小和不变的)

2.↑↓、↑=、↑==↓、↓↑、↓=、↓==↑、=↑、=↓(说明来于CSDN博主「一二爱上蜜桃猫」

代码如下;

#include <iostream>

using namespace std;//此题可以根据单调性逆转次数做解,
//超过两次即不可分为两个非严格有序数组

int main()
{
    int T=0,n,i;
    cin>>n;
    int*a=new int[n];
    for(i=0;i<n;i++)
    {
        cin>>a[i];
    }
    for(i=0;i<(n-2);i++)
    {
        if((a[i]-a[i+1])*(a[i+1]-a[i+2])<0)//判断单调性逆转次数
        {
            T+=1;
            i+=1;//每次逆转后多往后推一位避免重复检测
        }
        else
        {
             T=T;
        }
    }

    if(T>1)//逆转两次以上即不可分为两个非严格有序数组
        cout<<"No";
    else
        cout<<"Yes";
    return 0;
}

### 回答1: 近序数组是指一个具有 n 个元素的数组,可以分为两个部分,且它的各个部分都是一个非严格有序数组。例如,数组 1、2、3、4、4、3、2、1 和数组 4、2、1、2、3、4 都是近序数组,但数组 1、5、7、3、9、3 不是近序数组。有序数组近序数组的特例,例如数组 1、3、3、4。 ### 回答2: 简单来说,近序数组就是由两个非严格有序数组组成的数组。严格有序指的是每个元素都满足从左到右/从小到大(或从大到小)的排列顺序,而非严格有序指的是元素之间可以相同。也就是说,在近序数组中,两个相同的元素之间可以存在其他元素。 那么如何判断一个数组是否为近序数组呢?我们可以通过对数组进行分割,看其分为的两部分是否都是非严格有序。比如,对于数组1、2、3、4、4、3、2、1,我们可以将其分为1、2、3、4和4、3、2、1两部分,两部分都是非严格有序,因此这是一个近序数组。 再比如,对于数组4、2、1、2、3、4,我们可以将其分为4、2、1和2、3、4两部分,同样都是非严格有序,所以这也是一个近序数组。 但是,对于数组1、5、7、3、9、3,我们无法将其分为两个非严格有序的部分,因此它不是近序数组近序数组的存在并不常见,但是有时会在具有特定性质的数据集中出现。它的性质与有序数组类似,但比有序数组更容易构造。对于一些算法问题,近序数组也可以作为输入数据,提供不同于有序数组的挑战性。 ### 回答3: 什么是近序数组近序数组是指一个具有n个元素的数组,可以将其分为两个部分,它的各个部分都是一个非严格有序数组数组。所谓非严格有序,就是数组中有重复元素,且重复元素可以放在任意位置,而不会影响数组的排序结果。 近序数组的特点 1. 可以被分为两个部分:一个是递增部分,一个是递减部分。 2. 数组中的元素可以存在重复。 3. 数组中的元素不一定要完全按照升序或降序排列,只是要求部分数组是非严格有序数组。 如何判断一个数组是否是近序数组? 判断一个数组是否是近序数组,需要根据其是否满足上述近序数组的特点来进行判断。 具体来说,我们可以遍历整个数组,将其分为两个部分,分别判断这两个部分是否为非严格有序数组即可。 在遍历过程中,需要注意处理重复元素的情况。一般来说,我们可以将重复元素视为相同的元素,将其放置在相同的位置上。 如果分成的两个部分均为非严格有序数组,则该数组近序数组;否则,该数组不是近序数组近序数组的应用 近序数组的应用比较广泛。在算法题中,常常会出现要求处理近序数组的问题。比如,在处理搜索和排序问题时,近序数组可以为我们提供更多的信息,有助于提高算法的效率。 另外,在实际的应用场景中,也有一些问题可以转化为近序数组的处理问题。比如,在处理时间序列数据时,往往需要对数据进行排序和查找等操作,此时可以将时间序列转化为近序数组,再进行处理。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值