【问题描述】
对于一个具有 n 个元素的数组,如果可以将其分为两个部分,它的各个部分都是一个非严格有序数组,则我们称这样的数组为近序数组,例如
数组 1、2、3、4、4、3、2、1是近序数组,数组 4、2、1、2、3、4也是近序数组,而1、5、7、3、9、3就不是近序数组,数组1、3、3、4是有序数组,是近序数组的特例。
【输入形式】
输入的第一行为一个整数n,表示数组的元素个数。
接下来的一行,表示数组的元素。
【输出形式】
如果给定的数组是近序数组输出Yes,否则输出No。
【样例输入1】
8 1 2 3 4 4 3 2 1
【样例输出1】
Yes
【样例输入2】
4 3 4 3 4
【样例输出2】
Yes
【样例输入3】
5 3 4 3 4 3
【样例输出3】
No
#include <iostream>
using namespace std;
int main()
{
int n;
cin >> n;
int a[n];
int b[n-1];
for(int i=0;i<n;i++)
{
int num;
cin >> num;
a[i]=num;
}//先把题目给定的n个元素放入数组a中
int dif=0,middle=-1;
for(int j=0;j<n-1;j++)
{
if(a[j]>a[j+1])
b[j]=1;
else
b[j]=0;
}//定义一个数组b,把a数组中两两元素关系放入数组b中,
//前一个数大于后一个数则赋为1,小于或等于
//赋为0(该题等于没有影响,无所谓的)
int k;
for(k=0;k<n-2;k++)
{
if(b[k]!=b[k+1])
{
dif++;
middle++;
k++;
break;
}
}//再从b数组中从第一个元素开始找出不同的数,此时说明在此附近该串数字要被分开了
//此时要认真考虑情况,比如1234321(b数组为000111)
//则dif(0/1转折的数目)为1,dif为1的一串数字必符合条件;
//若dif为2,如1234345(b数组为000100),同样符合条件,
//但若12343234(b数组为0001100),却不符合条件,
//说明dif=2时,两次转折之间的数middle只能有一个,故右下方的判断;
//显然dif为3时必不符合条件。
while(k<n-2)//此时开始找出第二次转折
{
if(dif==1)
middle++;
if(b[k]!=b[k+1])
{
dif++;
}
k++;
}//求出dif
if(dif>=3||(dif==2&&middle>1))
cout << "No" << endl;
else
cout << "Yes" << endl;
}