- 博客(5)
- 收藏
- 关注
原创 速看!年低的最后一期机器学习材料和材料基因组专题!!!
该研究方法是一个闭环,将机器学习与密度泛函理论、热力学计算和实验相结合。研究人员首先使用了699种合金的公开数据训练了学习算法,然后让算法生成大量具有低热系数的候选成分,在加工和表征了17种可能的新合金后
2022-12-12 14:36:30 354 1
原创 材料发《Nature》、《Science》的最好方法
传统的发现新材料的方法,如经验试错法和基于密度泛函理论(DFT)的方法,往往需要较长的研发周期,成本高、效率低,已经不能很好的适应如今需求量激增的材料学领域。机器学习因其强大的数据处理能力和相对较低的研究门槛,能够有效地降低工业开发中的人力物力成本,缩短研发周期。...
2022-07-18 16:48:18 463
原创 机器学习(ML)在材料领域应用专题
机器学习作为一种兼顾开发效率以及开发成本的方法,已经逐渐应用于材料发现、结构分析、性质预测、反向设 计等多个领域,并且在材料学研究中展现出惊人的潜力。传统的发现新材料的方法,如经验试错法和基于密度泛 函理论(DFT)的方法,往往需要较长的研发周期,成本高、效率低,已经不能很好的适应如今需求量激增的材料 学领域。机器学习因其强大的数据处理能力和相对较低的研究门槛,能够有效地降低工业开发中的人力物力成 本,缩短研发周期。
2022-04-06 14:55:08 4036 1
原创 机器学习(ML)在材料领域应用专题
背景机器学习作为一种兼顾开发效率以及开发成本的方法,已经逐渐应用于材料发现、结构分析、性质预测、反向设计等多个领域,并且在材料学研究中展现出惊人的潜力。以往被广泛使用的经验试错法与计算模拟法因其效率低以及花费高等劣势,已经不能很好的适应如今需求量激增的材料学领域,机器学习因其强大的数据处理能力和相对较低的研究门槛,能够有效地降低工业开发中的人力物力成本,缩短研发周期。代替或配合传统的实验以及计算模拟,能够更加快速且准确的分析材料结构、预测材料性质,从而更加有效的开发新的功能材料。机器学习已在材料、纳米材
2022-02-22 14:40:14 1085
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人