速看!年低的最后一期机器学习材料和材料基因组专题!!!

本文探讨了机器学习在材料科学中的应用,如何通过数据驱动的模型预测材料性能,以及材料基因组技术如何革新研发流程。机器学习已被广泛应用于光伏、热电等领域,加速新材料的发现。同时,介绍了近期在Nature等顶级期刊发表的相关研究,展示机器学习与材料基因组的协同创新。
摘要由CSDN通过智能技术生成

机器学习(ml)在材料的应用:面对巨大的材料设计空间,基于理论研究、实验分析以及计算仿真的传统方法已经跟不上高性能新材料的发展需求。近年来,机器学习与材料基因组的结合带动了材料信息学的进步,推动了材料科学的发展。当前,运用数据驱动的机器学习算法建立材料性能预测模型,然后将其应用于材料筛选与新材料开发的研究引起了学者们的广泛关注。利用机器学习框架搭建材料研究设计平台对材料大数据资源进行分析与预测,成为开发新型材料的重要手段。包括根据预测对象确定材料特征的计算或自动抽取,不同精度的实验与计算数据的获取与预处理;选取或者开发合适的机器学习预测模型和训练算法;估计预测效果与预测性能的可靠性;处理材料机器学习问题所独有的小数据、异构数据、非平衡数据等特性。目前研究的焦点是针对不同的材料性能,收集相关的数据集,基于物理原理构造特征表示来训练机器学习模型,并将机器学习的最新技术用于材料信息学。现阶段机器学习已经被应用于光伏、热电、半导体、有机材料等几乎所有的材料设计领域。通过采用机器学习算法训练材料性能的预测模型,并将其用于筛选现有材料数据库或者搜索新的材料,大大加快了新材料发现的过程。机器学习在材料科学的研究应用文章近两年来多次发表在Nature、Science、Angew、Advanced Materials、JACS、Nano Letters、ACS Catalysis、Joule、Matter、Energy Storage Materials等国际知名顶刊。例如最近德国马普钢铁研究所韦业博士与Dierk Raabe教授(共同通讯)联合提出了一种主动学习策略,以基于非常稀少的数据,在几乎无限的成分空间中加速高熵因瓦合金的设计。该研究方法是一个闭环,将机器学习与密度泛函理论、热力学计算和实验相结合。研究人员首先使用了699种合金的公开数据训练了学习算法,然后让算法生成大量具有低热系数的候选成分,在加工和表征了17种可能的新合金后,研究人员确定了两种热膨胀系数极低的高熵因瓦合金(在300 K下为约为2×10-6 K-1)。文献链接ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值