- 博客(9)
- 收藏
- 关注
转载 海量数据挖掘的关键技术及应用现状
网络化时代信息膨胀成为必然,如何准确、高效地从丰富而膨胀的数据中筛选出对经营决策有用的信息已经成为企业和机构迫切需要解决的问题,针对于此,海量数据挖掘技术应运而生,并显示出强大的解决能力。Gartner的报告指出,数据挖掘会成为未来10年内重要的技术之一。一、海量数据挖掘关键技术随时代而变化所谓海量数据挖掘,是指应用一定的算法,从海量的数据中发现有用的信息和知识。海量数据挖掘关键技术主要包
2012-11-16 14:45:45 1898
转载 matlab列向量求平均值和求方差
matlab中矩阵元素求和、求期望和均方差wine(1:59,:)%提取前59行的所有列向量的子矩阵。 在matlab中求一个矩阵中元素的和可以自己编写for循环来完成,这样比较方便,想求那些数据的和都可以做到,然而效率比较低,如果数据量大程序会跑好长时间。所以我们可以转而用matlab提供的sum函数。 设M为一个矩阵,那么: 1、求和 su
2012-11-12 10:33:29 57061
转载 标准差(S 或SD),标准误
标准差 :标准差(S 或SD) ,是用来反映变异程度,当两组观察值 在单位相同、均数相近的情况下,标准差越大,说明观察值间 的变异程度越大。即观察值围绕均数的分布较离散,均数的 代表性较差。反之,标准差越小,表明观察值间的变异较小, 观察值围绕均数的分布较密集,均数的代表性较好。在医学 研究中,对于标准差的大小,原则上应该控制在均值的12 % 以内,如果标准差过大,将直
2012-11-12 10:31:25 9858
转载 PCA·1——主成分分析
PCA·1——主成分分析 . 主成分分析 ( Principal Component Analysis , PCA )是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。计算主成分的目的是将高维数据投影到较低维空间。给定 n 个变量的 m 个观察值,形成一个 n ′ m 的数据矩阵, n 通常比较大。对于一个由多个
2012-11-10 21:54:20 3227
转载 matlab实现主成分分析 princomp函数
最近看了些主成分分析,混迹Matlab论坛,翻了n多帖子,对princomp函数有了些了解。在此只讲一些个人理解,并没有用术语,只求通俗。贡献率:每一维数据对于区分整个数据的贡献,贡献率最大的显然是主成分,第二大的是次主成分......[coef,score,latent,t2] = princomp(x);(个人观点):x:为要输入的n维原始数据。带入这个matlab自带函数,将
2012-11-10 20:26:22 15427
转载 优雅的谢幕
谢谢大家。Mr. Romney: Thank you. 我刚刚致电奥巴马总统,祝贺他赢得了大选。I have just called President Obama
2012-11-09 09:16:04 1650 1
转载 视网膜显示技术
视网膜显示技术 一种新兴显示科技。iPhone 4的显示屏可以说是目前所有手机中最好的,这不仅归功于它超高的分辨率,而且最重要的是,苹果为它使用了名为Retina Display(视网膜显示)的技术。 iPhone 4的近距离拍照效果 iPhone 3GS的近距离拍照效果如图,左图有明显颗粒感,而右图则没有。 Re
2012-11-09 09:04:41 854
转载 Matlab中产生正态分布随机数的函数normrnd
功能:生成服从正态分布的随机数语法:R=normrnd(MU,SIGMA)R=normrnd(MU,SIGMA,m)R=normrnd(MU,SIGMA,m,n) 说 明:R=normrnd(MU,SIGMA):生成服从正态分布(MU参数代表均值,DELTA参数代表标准差)的随机数。输入的向量或矩阵MU和SIGMA必须形式相同,输出R也和它们形式相同。标量输入将被扩展成和
2012-11-08 18:54:06 61538
转载 matlab快捷键
Matlab注释技巧1. m文件如果是函数,保存的文件名最好与函数名一致,这点都很清楚。不过容易疏忽的是,m文件名的命名尽量不要是简单的英文单词,最好是由大小写英文/数字/下划线等组成。原因是简单的单词命名容易与matlab内部函数名同名,结果会出现一些莫名其妙的错误。例如,写个m文件,命名为spy,运行时就弹出一个怪怪的figure,呵呵,我当初还以为是什么bug。
2012-11-08 18:48:20 2394 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人