标准差 :
标准差(S 或SD) , 是用来反映变异程度,当两组观察值
在单位相同、均数相近的情况下,标准差越大,说明观察值间
的变异程度越大。即观察值围绕均数的分布较离散,均数的
代表性较差。反之,标准差越小,表明观察值间的变异较小,
观察值围绕均数的分布较密集,均数的代表性较好。在医学
研究中,对于标准差的大小,原则上应该控制在均值的12 %
以内,如果标准差过大,将直接影响研究的准确性。
标准误:
标准误( Sx 或S E ) ,是样本均数的抽样误差。在实际工
作中,我们无法直接了解研究对象的总体情况,经常采用随
机抽样的方法,取得所需要的指标,即样本指标 。样本指标
与总体指标之间存在的差别,称为抽样误差,其大小通常用
均数的标准误来表示。
数理统计证明,标准误的大小与标准差成正比,而与样
本含量( n ) 的平分根成反比,即: Sx = S/ n 这就是标准误
的计算方法。
输入样本a=【1 2 3】
var(a,1)的话,应该是n
标准差(S 或SD) , 是用来反映变异程度,当两组观察值
在单位相同、均数相近的情况下,标准差越大,说明观察值间
的变异程度越大。即观察值围绕均数的分布较离散,均数的
代表性较差。反之,标准差越小,表明观察值间的变异较小,
观察值围绕均数的分布较密集,均数的代表性较好。在医学
研究中,对于标准差的大小,原则上应该控制在均值的12 %
以内,如果标准差过大,将直接影响研究的准确性。
标准误:
标准误( Sx 或S E ) ,是样本均数的抽样误差。在实际工
作中,我们无法直接了解研究对象的总体情况,经常采用随
机抽样的方法,取得所需要的指标,即样本指标 。样本指标
与总体指标之间存在的差别,称为抽样误差,其大小通常用
均数的标准误来表示。
数理统计证明,标准误的大小与标准差成正比,而与样
本含量( n ) 的平分根成反比,即: Sx = S/ n 这就是标准误
的计算方法。
输入样本a=【1 2 3】
>> var(a,1) ans = 0.6667 |
如果是var(a,0)的话,是n-1,默认是0
var和std函数一样,最后都是除以 n-1也就是说除数是2,而不是3