动态规划C++实现--换钱的方法数(二)(动态规划及其改进方法)

本文介绍了一种动态规划的C++实现,用于解决换钱的方法数问题。通过动态规划优化,将时间复杂度从O(N*aim^2)降低到O(N*aim),并讨论了空间压缩技术,将额外空间复杂度降至O(aim)。
摘要由CSDN通过智能技术生成

题目:换钱的方法数

       给定数组 arr, arr中所有的值都为正数且不重复。每个值代表一种面值的货币,每种面值的货币可以使用任意张,再给定一个整数aim代表要找的钱数,求换钱有多少种方法

将原文的伪代码进行C++实现

程序员代码面试指南第四章递归和动态规划  点击打开链接

例1:arr = [5, 10, 25, 1] ,aim = 15, 6种方法

1) 3张5元; 2)1张10元+1张5元; 3)1张10元+5张1元; 4)10张1元+1张5元;5)2张5元+5张1元; 6)15张1元

注:暴力递归和记忆化搜索方法,见前文 动态规划C++实现--换钱的方法数(一)(暴力递归 和 记忆化搜索)

总结:

  •   暴力递归                   时间复杂度 O(aim^N)
  •   记忆化搜索               时间复杂度 O (N*aim^2)
  •   动态规划                   时间复杂度 O (N*aim^2)
  •   改进动态规划            时间复杂度 O (N*aim)      额外空间复杂度 O (N*aim)
  •   压缩空间的动态规划   时间复杂度 O (N*aim)     额外空间复杂度 O (aim)

3、动态规划

动态规划方法,生成函数为 N、列数为 aim+1的二

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值