The recent All-Berland Olympiad in Informatics featured n participants with each scoring a certain amount of points.
As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria:
- At least one participant should get a diploma.
- None of those with score equal to zero should get awarded.
- When someone is awarded, all participants with score not less than his score should also be awarded.
Determine the number of ways to choose a subset of participants that will receive the diplomas.
The first line contains a single integer n (1 ≤ n ≤ 100) — the number of participants.
The next line contains a sequence of n integers a1, a2, ..., an (0 ≤ ai ≤ 600) — participants' scores.
It's guaranteed that at least one participant has non-zero score.
Print a single integer — the desired number of ways.
4 1 3 3 2
3
3 1 1 1
1
4 42 0 0 42
1
题意:有n个人,你可以规定分数线,让所有不低于这个分数的人获奖,0分选手不能获奖,问你有多少种划分方法。
思路:很明显,求出有几个不同的数,就是几个分数线划分方法,注意0除外,可以用set容器去重,直接输出set里元素个数就是答案。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
set<ll>st;
ll n,x,ans;
int main()
{
while(~scanf("%lld",&n))
{
st.clear();
for(ll i=1;i<=n;i++)
{
scanf("%lld",&x);
if(x==0)continue;
st.insert(x);
}
ans=st.size();
printf("%lld\n",ans);
}
return 0;
}