1. 批处理(可运行)
object WordCount {
def main(args: Array[String]): Unit = {
//创建执行环境
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
//读取文件数据
val inputPath: String = "D:\\WorkSpace\\MyWorld\\FlinkTutorial\\src\\main\\resources\\hello.txt"
val inputDataSet: DataSet[String] = env.readTextFile(inputPath)
//计算单词出现次数
val resultDataSet: AggregateDataSet[(String, Int)] = inputDataSet
.flatMap(_.split(" "))
.map((_, 1))
.groupBy(0)
.sum(1)
//打印输出
resultDataSet.print()
}
}
2. 流处理(可运行)
object StreamWordCount {
def main(args: Array[String]): Unit = {
//创建流处理执行环境
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
//设置环境属性
env.setParallelism(4)
//从外部命令读取参数(--host hadoop1006 --port 7777)
val paramTool: ParameterTool = ParameterTool.fromArgs(args)
val host: String = paramTool.get("host")
val port: Int = paramTool.getInt("port")
//接收socket文本流
val inputDataStream: DataStream[String] = env.socketTextStream(host, port)
//流式计算单词出现次数
val resultDataStream: DataStream[(String, Int)] = inputDataStream
.flatMap(_.split(" "))
.map((_, 1))
.keyBy(0)
.sum(1)
//打印输出
resultDataStream.print()
// 启动任务执行
env.execute("stream word count")
}
}
3. 方法解释
① getExecutionEnvironment : 会根据查询运行的方式决定返回什么样的运行环境
createLocalEnvironment :本地执行环境
createRemoteEnvironment:集群执行环境
② readTextFile : 读取文本文件
fromElement :读取数据本身
fromElementCollection :读取数据集合
③ ParameterTool: Flink基础工具读取配置信息,内部是一个Map结构
fromArgs :从命令行参数中获取
fromPropertiesFile :从配置文件中获取
fromSystemProperties :从系统属性中获取
详细内容 => Flink最佳实践 - 简书 https://www.jianshu.com/p/a71b0ed7ef15
④ socketTextStream: 创建一个输入流从源主机名: 端口。使用TCP套接字接收数据。接收socket文本流
⑤ execute : 内部调用抽象方法execute,启动任务执行。若无,则直接运行结束任务。
4. 重点逻辑分析
① flatMap : 先映射后扁平化
map: 映射
② 核心代码
val resultDataStream: DataStream[(String, Int)] = inputDataStream
.flatMap(_.split(" "))
.map((_, 1))
.keyBy(0)
.sum(1)
③ 逻辑处理流程图: