推荐系统算法框架设计

推荐系统的核心即是探索item-item、user-item、user-user的关系,然后通过一种方法把这种关系量化或可视化,或许这般说法太过于简化了,仔细的思考过后会发现并不那么容易,让机器发现尿不湿与啤酒的关系,或许并不是很难,而现在是个性化推荐,不只是尿不湿和啤酒的关系,而是什么样子的尿不湿和什么样子的啤酒给什么样子的人推荐,或者说中间还需要奶粉等等很多很多,item千千万,user动辄上亿,在如此纷繁复杂的item与user面前,要让每一个人满意,这其中并不容易。
简单的,大家都知道超市尿不湿和啤酒放在一起的案例,但是在当下这个时代,大家去超市有谁会发现尿不湿旁边放着啤酒?至少小编没见过,所以这是一个属于过去的故事,这个故事包含了最原始的推荐的核心思想,但是这种还是没有细分到个人的角度,或许是面对的多数群体,所以这里我们说到的推荐系统是个性化推荐,推荐的主体是个人,不是群体。
所以在目前的推荐系统中用户画像、item画像算是推荐系统的一种标配的数据,这些数据有些是通过算法训练获取,有的是直接原始数据抽取,说到这我想起我的同事问我的一个问题:画像模型达到最优了,那你如何平衡这个整个系统达到最优,实际上就是说局部最优和全局最优的问题?当时的我听到这个问题竟无言以对,留着给各位看客思考,评论区可以各抒己见。
推荐系统的主要框架由三个部分组成:数据特征处理、match、ranking。数据处理阶段即特征工程,而此时的特征工程在整个推荐系统中是一个组件,但与普遍意义上的特征工程有一定的差异就是:普遍意义上特征工程是对数据进行一系列的清洗、采样、统计分析等一系列处理,而此时的特征工程是在普遍意义上特征工程的基础上,采用了算法对item和user进行了相关属性的画像,这时可以理解为进行了特征的组合生成新的特征,这种做法一方面可以提高数据的聚合度,直接采用用户的行为数据,数据的离散度很高,通过画像的数据可以为用户推荐更加匹配的item。match是推荐系统中的粗排序,主要基于用户的搜索、历史和商品热门等等一系列数据产生的一个可能推荐列表,作为用户可能购买或点击的商品列表,下一步ranking则是基于match计算的可能推荐列表,对列表中的商品进行点击率的预估计算,而后通过对预估点击率的排序生成一个用户的实际推荐列表。下面是一个简单的示意图:

在这里插入图片描述
由图中也可发现,这并非严格意义上的推荐算法框架,而是一个流程框架图,在推荐系统的必须要涉及到的问题:实时计算,所以在这里小编就仅仅对推荐系统的整个设计的思路进行解释,而在后续会将其中每一个步骤进行剖析讲解。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值