线性表的基本运算及多项式的算术运算

线性表的基本运算:

template<class T>

voidSeqList<T>::Reverse(){

  T* t= new T[maxLength];

  int j=0;

  for (int i = 0; i < n; i++)  //利用中间数组逆置

  {

    t[i] = elements[i];

  }

  for (int a = n; a>=0; a--)

  {

    elements[j++] = t[a-1];

  }

}

template<class T>

bool SeqList<T>::DeleteX(constT &x){

int flag;

for(int i=0;i<n;i++){

     if(elements[i]==x){

        flag = 1;

        Delete(i);

     }

}

if(flag)

     return true;

return false;

}


多项式的算术运算:

Polynomal operator*(Polynomal& A,Polynomal&B){

       Term*pa,*pb,*pc;

       intAL,BL,i,k,maxExp;

       PolynomalC;            //存储结果多项式

       pc=C.getHead();         //结果多项式的尾指针

       AL=A.maxOrder();

       BL=B.maxOrder();

       if(AL!=-1||BL!=-1)        //相乘运算

       {

              maxExp=AL+BL;          //结果最高项

              float*result=new float[maxExp+1];

              for(i = 0; i < maxExp; i++)

              {

                     result[i]=0.0;

              }                   

              pa=A.getHead()->link;//多项式A遍历指针

              while(pa!=NULL){  

                     pb=B.getHead()->link;  //多项式B遍历指针

                     while(pb!=NULL){

                            k=pa->exp+pb->exp;

                            result[k]=result[k]+pa->coef*pb->coef;

                            pb=pb->link;

                     }

                     pa=pa->link;

              }

              for(i = 0; i <= maxExp; i++)

                     if(fabs(result[i])>0.001)

                            pc=pc->InsertAfter(result[i],i);

                     delete[]result;

       }

       pc->link=NULL;

       return C;

}
实验一 线性表及其应用 一、 实验目的和要求 1、掌握线性表的插入、删除、查找等基本操作设计与实现 2、学习利用线性表提供的接口去求解实际问题 3、熟悉线性表的的存储方法 二、 实验内容和原理 1、实验内容:设计一个一元多项式的简单计算器,其基本功能有①输入并建立多项式;②输出多项式;③多项式相加。可利用单链表或单循环链表实现之。 2、实验原理:以线性表来描述一元多项式,存储结构采用单链表,每个结点存储的多项式中某一项的系数和指数,建立单链表时指数高的结点列于指数低的 结点之后,即线性表的元素按指数递增有序排列。 三、 实验环境 Visual C++ 6.0 及PC机 四、 算法描述及实验步骤 思想算法: 以线性表来描述一元多项式,存储结构采用单链表,每个结点存储的多项式中某一项的系数和指数,建立单链表时指数高的结点列于指数低的结点之后,即线性表的元素按指数递增有序排列。 例如构造两个多项式ha: 5X3+4X2+3X+2 hb: X2+X+1 多项式加法:定义指针p,q分别指向ha,hb i.p->exp==q->exp ,r->coef=p->coef+q->coef,pa,pb下移; ii.p->expexp ,r->coef=q->coef;r->exp=q->exp;,q下移 iii.pa->exp>pb->exp, r->exp=p->exp;r->coef=p->coef;,p下移 iv.p!=NULL,pb==NULL.相当于iii. V.q==NULL,pb!=NULL.相当于ii. 其流程图如下: 多项式乘法:定义指针fp,gp分别指向f,g 1.将两多项式最大指数相加并赋于maxp,并置g 2.用for循环求指数等于maxp时相乘的系数 3. (fp!=NULL)&&(gp!=NULL), p=fp->exp+gp->exp 1.p>maxp, fp=fp->next; 2. pnext; 3.p=maxp, x+=fp->coef*gp->coef; fp=fp->next;gp=gp->next; 五、 实验结果 1.分别输入两个多项式: 5X3+4X2+3X+2 和X2+X+1,然后输出结果如下: 2.分别输入两个多项式:6X4+4X2+2和5X+6,然后输出结果如下: 六、 总结 此次上机实验应用了线性表实现了一次实际操作,完成了一个一元多项式的简单计算器,不仅对此次编译程序的算法思想有了新的认识,还让我深刻的体会到了线性表的重要性以及其应用的方便,并且对指针加深了映象,应用了书本中的算法思想,对我以后的编译以及完成新的程序有很大的帮助。 附录: 1.建立多项式列表代码如下: mulpoly *creatpoly()/*建立多项式列表*/ {mulpoly *head,*r,*s;/*设中间变量*/ int m,n; head=(mulpoly *)malloc(sizeof(mulpoly));/*头结点申请空间*/ printf("\ninput coef and exp:\n"); scanf("%d%d",&n,&m);/*输入多项式系数和指数*/ r=head;/*尾指针指向头指针*/ while(n!=0)/*将输入的多项式存放在S中*/ {s=(mulpoly*)malloc(sizeof(mulpoly)); s->coef=n; s->exp=m; r->next=s; r=s; /*printf("input coef and exp:\n");*/ scanf("%d%d",&n,&m);/*再次输入多项式系数和指数*/ } r->next=NULL;/*将尾指针置空*/ head=head->next;/*将head哑结点向前跑一个结点,使其不为空*/ return (head);/*返回多项式*/ } 2.两个多项式相加代码如下: mulpoly *polyadd(mulpoly *ha,mulpoly *hb)/*两个多项式相加*/ {mulpoly *hc,*p,*q,*s,*r;/*声明结构体型*/ int x; p=ha; q=hb; hc=(mulpoly *)malloc(sizeof(mulpoly));/*申请结点空间*/ s=hc; while((p!=NULL)&&(q!=NULL))/*两多项式不为空*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值