在Linux部署Stable Diffusion

Part1前言

在Windows部署Stable Diffusion

如果我们因工作需要使用Linux服务器或者开发环境,但又想体验一下AI绘画的乐趣,那么也可以试着在Linux上配置Stable Diffusion的WebUI

先放一张图欣赏:

7e4afae254ecad852668513280bd4b08.png

Part2硬件需求

可以先对系统进行检查,看看显卡是否支持

1显卡(GPU)

  1. 这里用到的是Nvidia GTX1050 Ti

2内存

内存16G或者以上,至少有一个10G以上的SSD固态硬盘。

3环境

这里用到是Ubuntu 22.04 LTS

  1. 网络波动,有些网页会打不开,有些下载很慢,在这里可能需要会科学上网

如果满足相关软硬件要求,请继续往下看 (当然如果还是想拥有自建的SD,也可以考虑通过Google Colad云端搭建运行)

Part3软件需求

git

python

anaconda

1、安装基础软件

1.1 安装git

安装非常直接,运行下面命令

sudo apt install git

1.2 安装python

sudo apt install python3 python3-pip python3-virtualenv

1.3 安装显卡驱动程序

主要是用来跑算法的依赖程序

这里用的是Nvidia显卡,所以通过安装cuda依赖程序

nvidia-smi

nvcc --version

安装之后,重启一下

2、安装Stable-Diffusion-WebUI

(网络不好,可以加上代理)

2.1  下载项目源码

使用 git 下载项目源码,假如我们要将 stable-diffusion-webui 下载到指定文件下输入

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

2.2 运行

如果你熟悉Python开发的话,用Anaconda设定Python虚拟环境会更好。

Anaconda是针对资料科学打造的Python发行版,能管理一部电脑上的多重Python版本。如果之前已经装过旧版Python,不需要解除安装。

1. 安装Anaconda

安装Stable Diffusion WebUI的依赖套件

  1. 建立Pyhton 3.10.6的虚拟环境,输入:

conda create -n webui python=3.10.6
2. 激活项目环境
conda activate webui
3. 启动运行

安装依赖套件。

执行webui.sh,会自动下载安装依赖套件。

cd ~/stable-diffusion-webui

./webui.sh

执行后,将会自动下载stable-diffusion相关依赖,此步骤需要的时间较长,请确保网络稳定,耐心等待

4. 安装成功后

命令行窗口看到网址,把http://127.0.0.1:7860复制到浏览器中打开,进入Stable Diffusion界面,就能访问了

如果其他电脑要访问,这可以通过使用本机IP进行,如:http://本机IP:7860

记得打开防火墙

sudo ufw allow 7860/tcp

sudo ufw reload

Part4常见问题

  1. 一般都是网络问题,方法就是找到对应的文件,修改下载源,重新给它换个别的国内源。

  2. 手动下载源或者使用代理方式

Part5欣赏

a12b85b0376c355e18b6701842cec356.png

Part6附录

Stable Diffusion Webui:AUTOMATIC1111/stable-diffusion-webui: Stable Diffusion web UI (github.com)

Stable Diffusion Webui 文档:Home · AUTOMATIC1111/stable-diffusion-webui Wiki (github.com)

### 安装和配置 Stable Diffusion XL #### 准备环境 为了在 Linux 服务器上成功安装并运行 Stable Diffusion XL 模型,需确保操作系统已更新至最新状态,并安装必要的依赖项。建议使用 Anaconda 或 Miniconda 来管理 Python 环境及其包。 ```bash sudo apt-get update && sudo apt-get upgrade -y ``` 创建一个新的 conda 虚拟环境来隔离项目所需的库文件: ```bash conda create --name sd-xl python=3.8 conda activate sd-xl ``` #### 获取源码与工具脚本 克隆 Kohya Trainer 仓库到本地目录下以便获取训练所需的各种资源以及辅助脚本[^2]。 ```bash git clone https://github.com/Linaqruf/kohya-trainer.git cd kohya-trainer/ ``` #### 构建 TensorRT 引擎 对于高性能推理需求而言,构建特定于硬件平台优化过的 TensorRT 推理引擎是非常重要的一步。这可以通过执行 `build_models.sh` 脚本来完成,该过程可能耗时数分钟不等[^1]。 ```bash ./scripts/build_models.sh --model stable_diffusion_xl ``` #### 配置训练参数 利用 Kohya Trainer 提供的 Jupyter Notebook 文件(如 `kohya-trainer-XL.ipynb` 和 `kohya-LoRA-trainer-XL.ipynb`),可以根据实际应用场景调整数据集准备流程及模型超参设置。 #### 版本迭代说明 值得注意的是,在最初发布的测试版本基础上,通过收集用户反馈并对图像质量不断改进,最终形成了更加稳定可靠的 Stable Diffusion XL 1.0 正式版[^3]。 #### 开始实验 当一切就绪之后,即可加载预训练权重开始尝试生成新的艺术作品或是继续微调现有模型以适应更具体的任务要求。 ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch device = "cuda" model_id = "stabilityai/stable-diffusion-x4-upscaler" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler).to(device) prompt = "A fantasy landscape with a castle on top of the mountain." image = pipe(prompt=prompt).images[0] image.save("./fantasy_landscape.png") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值