代码随想录Day53 | 股票买卖

文章讲述了如何使用动态规划方法解决LeetCode中的股票买卖问题,分别分析了121版本的贪心策略和122版本的持有期间不能再次购买的情况,详细介绍了二维dp数组的构建与计算过程。
摘要由CSDN通过智能技术生成

121.买卖股票的最佳时机

文档讲解:代码随想录
视频讲解: 动态规划之 LeetCode:121.买卖股票的最佳时机1
状态

贪心->dp

之前使用的贪心算法,我们稍微修改

  1. dp数组
    dp[j] 表示 第j天的可以赚得的最大金额
  2. 递推公式
    如果第j天金额比记录的最小值小那么就为0,并且更新最小值
    如果第j天金额比记录的最小值大,那么就比较dp[j-1]和prices[j]-minval的大小存储最大值。
  3. 初始化
    初始全为0,最小值记录为第一个数
  4. 遍历顺序
    从前向后
  5. 打印dp
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        //记录最小值
        int minval = prices[0];
        vector<int> dp(prices.size(),0);
        for(int i = 1;i<prices.size();i++)
        {
            if(prices[i] <= minval)
            {
                dp[i] = dp[i-1];
                minval = prices[i];
            }
            else
            {
                dp[i] = max(dp[i-1],prices[i]-minval);
            }
        }
        return dp[prices.size()-1];
    }
};

动态规划

二维dp数组

  1. dp数组
    dp[j][0] 表示第i天持有股票时的最大金额
    dp[j][1] 表示第i天不持有股票时的最大金额

  2. 递推公式
    首先对于dp[j][0],由于只会购买一次,所以如果前一天持有股票那么dp[j][0] = dp[j-1][0]。如果前一天没有持有股票,则第j天购入,那么dp[j][0] = -prices[j]

    其次对于dp[j][1],如果第j-1天不持有股票那么dp[j][1] = dp[j-1][1]。如果第j天卖出股票那么dp[j][1] = dp[j-1][0]+prices[j]

  3. 初始化
    dp[0][0] = -prices[0] dp[0][1] = 0

  4. 遍历顺序
    从前往后

  5. 打印dp

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if(prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(),vector<int>(2));
        dp[0][0] = -1* prices[0];
        dp[0][1] = 0;

        for(int i = 1;i<prices.size();i++)
        {
            dp[i][0] = max(dp[i-1][0],-1*prices[i]);
            dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i]);
        }
        return dp[prices.size()-1][1];
    }
};

122.买卖股票的最佳时机II

文档讲解:代码随想录
视频讲解:
状态

这道题最大的区别就是可以购买多次,但在持有期间不能购买,所以对于解题实际上是递推公式发生了变化
二维dp数组

  1. dp数组
    dp[j][0] 表示第i天持有股票时的最大金额
    dp[j][1] 表示第i天不持有股票时的最大金额

  2. 递推公式
    首先对于dp[j][0],由于只会购买一次,所以如果前一天持有股票那么dp[j][0] = dp[j-1][0]。如果前一天没有持有股票,由于前面已经卖出有金额或者为0则第j天购入,那么dp[j][0] = dp[j-1][1]-prices[j]

    其次对于dp[j][1],如果第j-1天不持有股票那么dp[j][1] = dp[j-1][1]。如果第j天卖出股票那么dp[j][1] = dp[j-1][0]+prices[j]

  3. 初始化
    dp[0][0] = -prices[0] dp[0][1] = 0

  4. 遍历顺序
    从前往后

  5. 打印dp

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if(prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(),vector<int>(2));
        dp[0][0] = 0 - prices[0];
        dp[0][1] = 0;
        for(int i = 1;i<prices.size();i++)
        {
            //对于第i天持有股票的利润,在前一天没有持有,今天买入的情况下,需要考虑之前卖出的所得利润
            dp[i][0] = max(dp[i-1][0],dp[i-1][1]-prices[i]);
            dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i]);
        }
        return dp[prices.size()-1][1];
    }
};

这两道题都是dp[j][1]的返回结果,因为最大金额一定是要抛出手中股票才会得到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值