- 博客(14)
- 资源 (2)
- 收藏
- 关注
原创 深度学习之YoloV5模型转换及嵌入式部署应用整体过程详细介绍
深度学习之YoloV5模型转换及嵌入式部署应用详细介绍。以yolov5模型为例,适用于基于嵌入式移动端的模型转换及应用部署。亲自实战记录,文章步骤清楚、说明详细
2023-09-02 09:36:37 942
原创 深度学习之天气识别应用的详细分析与介绍
深度学习之天气识别应用的详细分析与介绍。基于图像的深度学习网络模型应用,对多种不同天气(雨天、雾天、雪天、晴天、阴天等)进行分类,适用于多种场景,如自动驾驶领域,可通过识别不同的天气类型(如雪天,地面比较滑、轮胎附着系数低等)进行相应的车辆控制,增加了行车的安全性。
2023-09-02 09:07:28 449
原创 cuda版本切换:如cuda11.1切换到cuda10.2
cuda版本切换:如cuda11.1切换到cuda10.2当前已安装cuda11.1版本,显卡驱动版本:460.91.03, cuDNN版本:8.2.1 for 11.1欲切换cuda10.2版本使用一下
2022-01-13 10:36:48 4333
原创 Ubuntu18.04.5+GTX-1060+显卡驱动+CUDA+cuDNN+pyTorch安装
Ubuntu18.04.5+GTX-1060+显卡驱动+CUDA+cuDNN+pyTorch安装
2021-12-21 15:22:37 547
原创 智能驾驶-任务部署-目标检测跟踪融合-网络模型设计优化部署---粗浅之言
注意:杂乱无章,感兴趣可看问题涉及有:硬件平台、软件系统框架、目标检测、目标跟踪、多传感器融合算法、网络模型设计、训练、优化、嵌入式部署等一系列技术体系;根据自己对相关方面的理解,现做一粗浅的小结。硬件平台,如安霸的CV2,它主要有SOC和MCU;SOC上有一个linux系统,用于某些处理以及调度相关任务,比如调度视觉感知任务等;因为视觉感知处理相对耗时,且摄像头接在SOC上,所以被部署于SOC上,其它处理速度快的模块,被部署于MCU上,如控制模块等,当然从安全性角度考虑,控制模块也应该部署在MCU上,
2021-04-07 19:35:07 383 1
Nsight System和Nsight Compute程序性能优化使用说明
2023-12-08
Cluster聚类评价指标之CH指数-方差比C++源码附详细注释
2023-09-08
Cluster聚类评价指标之轮廓系数C++源码附详细注释
2023-09-08
深度学习之天气识别应用的详细分析与介绍
2023-09-02
深度学习之YoloV5模型转换及嵌入式部署应用详细介绍
2023-09-01
深度学习之模型转换(pytorch2onnx2ncnn)详细介绍
2023-09-01
深度学习多传感器融合之激光雷达点云如何映射到2D俯视图和前视图
2023-08-28
深度学习+移动端框架+模型部署
2023-08-27
目标检测_多目标跟踪_匈牙利算法_卡尔曼_C/C++实现
2021-04-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人