Python-玩转数据-scrapy简单分布式爬虫

一、说明

虽然scrapy能做的事情很多,但是要做到大规模的分布式应用则捉襟见肘。有能人改变了scrapy的队列调度,将起始的网址从start_urls里分离出来,改为从redis读取,多个客户端可以同时读取同一个redis,从而实现了分布式的爬虫。就算在同一台电脑上,也可以多进程的运行爬虫,在大规模抓取的过程中非常有效。

二、分布式爬虫原理

在这里插入图片描述
多了一个redis组件,主要影响两个地方:第一个是调度器。第二个是数据的处理。

Scrapy-Redis分布式策略。
在这里插入图片描述
作为一个分布式爬虫,是需要有一个Master端(核心服务器)的,在Master端,会搭建一个Redis数据库,用来存储start_urls、request、items。Master的职责是负责url指纹判重,Request的分配,以及数据的存储(一般在Master端会安装一个mongodb用来存储redis中的items)。出了Master之外,还有一个角色就是slaver(爬虫程序执行端),它主要负责执行爬虫程序爬取数据,并将爬取过程中新的Request提交到Master的redis数据库中。

如上图,假设我们有四台电脑:A, B, C, D ,其中任意一台电脑都可以作为 Master端 或 Slaver端。整个流程是:
首先Slaver端从Master端拿任务(Request、url)进行数据抓取,Slaver抓取数据的同时,产生新任务的Request便提交给 Master 处理;
Master端只有一个Redis数据库,负责将未处理的Request去重和任务分配,将处理后的Request加入待爬队列,并且存储爬取的数据。
在这里插入图片描述
在这里插入图片描述
Scrapy-Redis默认使用的就是这种策略,我们实现起来很简单,因为任务调度等工作Scrapy-Redis都已经帮我们做好了,我们只需要继承RedisSpider、指定redis_key就行了。

缺点是,Scrapy-Redis调度的任务是Request对象,里面信息量比较大(不仅包含url,还有callback函数、headers等信息),可能导致的结果就是会降低爬虫速度、而且会占用Redis大量的存储空间,所以如果要保证效率,那么就需要一定硬件水平。

三、案例准备

1、windows一台(从:scrapy)

2、linux一台(主:scrapy\redis\mongo)

ip:192.168.184.129

3、python3.6

linux下scrapy的配置步骤:

1、安装python3.6

yum install openssl-devel -y   解决pip3不能使用的问题(pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available)

下载python软件包,Python-3.6.1.tar.xz,解压后

      ./configure --prefix=/python3

      make

      make install  

    加上环境变量:

      PATH=/python3/bin:$PATH:$HOME/bin

      export PATH

    安装完成后,pip3默认也已经安装完成了(安装前需要先yum gcc)



  2、安装Twisted

    下载Twisted-17.9.0.tar.bz2,解压后 cd Twisted-17.9.0, python3 setup.py install

  3、安装scrapy

    pip3 install scrapy

    pip3 install scrapy-redis
  4、安装redis

    见博文redis安装与简单使用  
    错误:You need tcl 8.5 or newer in order to run the Redis test
      1、wget http://downloads.sourceforge.net/tcl/tcl8.6.1-src.tar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值