Java中的Stream API进阶使用

407 篇文章 0 订阅
本文介绍了Java8中StreamAPI的高级用法,包括自定义中间操作如filterNames,终止操作如allMatch,短路操作,以及如何利用并行流处理大数据和使用Optional避免NullPointerException。
摘要由CSDN通过智能技术生成

Java的Stream API是Java 8引入的一个强大的功能,它允许以声明性方式处理数据集合,例如过滤、映射、排序等。下面是一些Stream API的进阶使用:

  1. 自定义中间操作:你可以定义自己的中间操作,然后在Stream上使用它。例如,你可以创建一个名为filterNames的操作,它只接受名字长度大于5的字符串。

 

java复制代码

public static <T> Predicate<T> filterNames(String name) {
return (T t) -> t instanceof String && ((String) t).length() > 5 && ((String) t).contains(name);
}

然后在Stream上使用它:

 

java复制代码

List<String> names = Arrays.asList("Alice", "Bob", "Charlie", "Dave");
List<String> result = names.stream()
.filter(filterNames("a"))
.collect(Collectors.toList());
  1. 终止操作:除了常见的collectreduce等终止操作外,你还可以使用其他一些操作,如forEachallMatchanyMatch等。例如,你可以使用allMatch来检查Stream中的所有元素是否满足某个条件:

 

java复制代码

boolean allPositive = IntStream.range(0, 10)
.allMatch(i -> i > 0);
  1. 短路操作:一些Stream操作,如filtermap,支持短路。这意味着如果操作的源是无限的,那么这些操作可以在任何给定的时间点提前终止。这可以用来避免无限循环。例如:
 

java复制代码

Stream<Integer> numbers = Stream.generate(() -> 1).limit(1000);
List<Integer> result = numbers.filter(n -> n % 2 == 0).collect(Collectors.toList());

在这个例子中,如果源Stream是无限的,那么filter操作会在找到第一个偶数时停止,而不是尝试处理所有的数字。
4. 并行流:并行流允许你在多个线程上同时处理数据。这对于大数据集非常有用,因为它可以显著提高性能。但是要注意,并行流并不总是比顺序流更快。它们在处理大量数据时效果最好。例如:

 

java复制代码

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
List<Integer> result = numbers.parallelStream()
.filter(n -> n % 2 == 0)
.collect(Collectors.toList());
  1. 使用Optional:当你从Stream中获取单个元素时,你应该总是使用Optional。这可以避免NullPointerException。例如:

 

java复制代码

Optional<String> firstName = names.stream()
.findFirst();

在这个例子中,如果名字列表为空,firstName将是空的,而不是null。然后你可以使用firstName.isPresent()来检查是否有名字,或者使用firstName.orElse("default")来提供一个默认值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值