hdu 3572(最大流)

                                           Task Schedule

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6590    Accepted Submission(s): 2058


Problem Description
Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different machines on different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
 

Input
On the first line comes an integer T(T<=20), indicating the number of test cases.

You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
 

Output
For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.

Print a blank line after each test case.
 

Sample Input
  
  
2 4 3 1 3 5 1 1 4 2 3 7 3 5 9 2 2 2 1 3 1 2 2
 

Sample Output
  
  
Case 1: Yes Case 2: Yes
题目链接: 点击打开链接
题意:有n个任务,m台机器,每个任务如下描述:pi,si,ei,表示【si,ei] 这个时间段内,要做pi天,才能把任务做完(每个任务在同一个时间段只能由一台机器做)。问是否能完成所有任务。
思路:
 想到最大流还是不太容易的。最大流最为关键的是构图。
构建一个虚拟起点和虚拟汇点,起点和每个任务相连,流量为做这个任务所需要的时间,每天定义成一个点,与终点相连,流量为机器数,每个任务与可以做这个任务的时间相连,流量为1,;
易错点:
1.题目带来的坑点,第一个数为做这个任务要做时间长度,后两个数是区间长度,坑死我了这个。
2.这里的输出要有两个换行,要不然会present error;
3.dinic 算法会超时,sap才能过。


代码:

超时代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn=503;
 const int Ni = 2100;
 const int MAX = 1<<26;
 struct Edge{
     int u,v,c;
     int next;
 }edge[20*Ni];
 int n,m;
 int edn;//边数
 int p[Ni];//父亲
 int d[Ni],vis[maxn];
 int sp,tp;//原点,汇点

 void addedge(int u,int v,int c)
 {
     edge[edn].u=u; edge[edn].v=v; edge[edn].c=c;
     edge[edn].next=p[u]; p[u]=edn++;

     edge[edn].u=v; edge[edn].v=u; edge[edn].c=0;
     edge[edn].next=p[v]; p[v]=edn++;
 }
 int bfs()
 {
     queue <int> q;
     memset(d,-1,sizeof(d));
     d[sp]=0;
     q.push(sp);
     while(!q.empty())
     {
         int cur=q.front();
         q.pop();
         for(int i=p[cur];i!=-1;i=edge[i].next)
         {
             int u=edge[i].v;
             if(d[u]==-1 && edge[i].c>0)
             {
                 d[u]=d[cur]+1;
                 q.push(u);
             }
         }
     }
     return d[tp] != -1;
 }
 int dfs(int a,int b)
 {
     int r=0;
     if(a==tp)return b;
     for(int i=p[a];i!=-1 && r<b;i=edge[i].next)
     {
         int u=edge[i].v;
         if(edge[i].c>0 && d[u]==d[a]+1)
         {
             int x=min(edge[i].c,b-r);
             x=dfs(u,x);
             r+=x;
             edge[i].c-=x;
             edge[i^1].c+=x;
         }
     }
     if(!r)d[a]=-2;
     return r;
 }

 int dinic(int sp,int tp)
 {
     int total=0,t;
     while(bfs())
     {
         while(t=dfs(sp,MAX))
         total+=t;
     }
     return total;
 }
int main()
{
    int T;
    while(scanf("%d",&T)!=EOF)
    for(int t=1;t<=T;t++)
    {
        int n,m;
        int a,b,c;
         edn=0;//初始化
        memset(p,-1,sizeof(p));
        scanf("%d%d",&n,&m);
        sp=maxn+1,tp=maxn+2;
        int sum=0;
        for(int i=0;i<n;i++)
        {
            scanf("%d%d%d",&b,&a,&c);
            sum+=b;
            addedge(sp,1000+i,b);
            for(int j=a;j<=c;j++)
            {
               addedge(1000+i,j,1);
               vis[j]=1;
            }
        }
        for(int j=0;j<maxn;j++)
        if(vis[j])
          addedge(j,tp,m);
        printf("Case %d: ",t);
        if(dinic(sp,tp)==sum)
            printf("Yes\n\n");
        else
            printf("No\n\n");
    }
    return 0;
}

sap代码;
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>

using namespace std;

const int MAXN=20010;//点数的最大值
const int MAXM=880010;//边数的最大值
const int INF=0x7fffffff;
const int maxn=503;
int vis[maxn];
struct Node
{
    int from,to,next;
    int cap;
}edge[MAXM];

int tol;
int head[MAXN];
int dep[MAXN];
int gap[MAXN];//gap[x]=y :说明残留网络中dep[i]==x的个数为y

int n;//n是总的点的个数,包括源点和汇点
void init()
{
    tol=0;
    memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int w)
{
    edge[tol].from=u;
    edge[tol].to=v;
    edge[tol].cap=w;
    edge[tol].next=head[u];
    head[u]=tol++;
    edge[tol].from=v;
    edge[tol].to=u;
    edge[tol].cap=0;
    edge[tol].next=head[v];
    head[v]=tol++;
}
void BFS(int start,int end)
{
    memset(dep,-1,sizeof(dep));
    memset(gap,0,sizeof(gap));
    gap[0]=1;
    int que[MAXN];
    int front,rear;
    front=rear=0;
    dep[end]=0;
    que[rear++]=end;
    while(front!=rear)
    {
        int u=que[front++];
        if(front==MAXN)front=0;
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if(dep[v]!=-1)continue;
            que[rear++]=v;
            if(rear==MAXN)rear=0;
            dep[v]=dep[u]+1;
            ++gap[dep[v]];
        }
    }
}
int SAP(int start,int end)
{
    int res=0;
    BFS(start,end);
    int cur[MAXN];
    int S[MAXN];
    int top=0;
    memcpy(cur,head,sizeof(head));
    int u=start;
    int i;
    while(dep[start]<n)
    {
        if(u==end)
        {
            int temp=INF;
            int inser;
            for(i=0;i<top;i++)
               if(temp>edge[S[i]].cap)
               {
                   temp=edge[S[i]].cap;
                   inser=i;
               }
            for(i=0;i<top;i++)
            {
                edge[S[i]].cap-=temp;
                edge[S[i]^1].cap+=temp;
            }
            res+=temp;
            top=inser;
            u=edge[S[top]].from;
        }
        if(u!=end&&gap[dep[u]-1]==0)//出现断层,无增广路
          break;
        for(i=cur[u];i!=-1;i=edge[i].next)
           if(edge[i].cap!=0&&dep[u]==dep[edge[i].to]+1)
             break;
        if(i!=-1)
        {
            cur[u]=i;
            S[top++]=i;
            u=edge[i].to;
        }
        else
        {
            int min=n;
            for(i=head[u];i!=-1;i=edge[i].next)
            {
                if(edge[i].cap==0)continue;
                if(min>dep[edge[i].to])
                {
                    min=dep[edge[i].to];
                    cur[u]=i;
                }
            }
            --gap[dep[u]];
            dep[u]=min+1;
            ++gap[dep[u]];
            if(u!=start)u=edge[S[--top]].from;
        }
    }
    return res;
}
int main()
{
    int T;
    scanf("%d",&T);
    for(int t=1;t<=T;t++)
    {
        init();
        int n1,m;
        int a,b,c;
        scanf("%d%d",&n1,&m);
        int sp=maxn+1,tp=maxn+2;
        int sum=0;
        memset(vis,0,sizeof(vis));
        n=0;
        for(int i=0;i<n1;i++)
        {
            scanf("%d%d%d",&b,&a,&c);
            sum+=b;
            addedge(sp,1000+i,b);
            for(int j=a;j<=c;j++)
            {
               addedge(1000+i,j,1);
               if(!vis[j])
                n++;
                vis[j]=1;
            }
        }
        printf("Case %d: ",t);
        for(int j=0;j<maxn;j++)
        if(vis[j])
          addedge(j,tp,m);
        n+=n1;
        n+=2;
        if(SAP(sp,tp)==sum)
            printf("Yes\n\n");
        else
            printf("No\n\n");
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值