152. 乘积最大子数组

思路一:求解长度为n的区间内连续子数组的最大乘积,可以先求解前n-1个数组成的数组内的连续子数组的最大乘积,再考虑由第n个数组成的连续子数组中的乘积和前n-1个乘积中更大的,作为最终结果,代码如下:

class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        size = len(nums)
        res = [0] * size
        res[0] = nums[0]
        for i in range(1, size):
            res[i] = max(res[i-1], nums[i])
            for j in range(i-1, -1, -1):
                nums[j] *= nums[i]
                res[i] = max(res[i], nums[j])
        return res[-1]

思路二:动态规划,维护以当前位置元素结尾的连续子数组的最大乘积和最小乘积,最终结果是这些最大乘积中最大的值

class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        size = len(nums)
        if size == 0: return 0
        fmax = nums[0]
        fmin = nums[0]
        res = nums[0]
        for i in range(1, size):
            tmp1 = min(nums[i], fmax * nums[i], fmin * nums[i])
            tmp2 = max(nums[i], fmax * nums[i], fmin * nums[i])
            fmin = tmp1
            fmax = tmp2
            res = max(res, fmax)
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值