以CNN为例
- CNN 结构
- tensorflow代码实现alexnet分类
- keras代码vgg分类
主要结构
- 数据输入层/ Input layer
- 卷积计算层/ CONV layer
- ReLU激励层 / ReLU layer
- 池化层 / Pooling layer
- 全连接层 / FC layer
- Batch Normalization层(可能有)
relu
(Cifar-10的训练走向)
将神经元的输出f,作为其输入x的函数,对其建模的标准方法是用
f(x)=tanh(x)
或者
f(x)=(1+exp(−x))−1
。
梯度下降的训练时间而言,这些饱和非线性函数比不饱和非线性函数
f(x)=max(0,x)
要慢得多。
训练带ReLUs的深度卷积神经网络比带tanh单元的同等网络要快好几倍。如图所示.