Description
现在你有N个数,分别为A1,A2,…,AN,现在有M组询问需要你回答。每个询问将会给你一个L和R(L<=R),保证Max{Ai}-Min{Ai}<=R-L,你需要找出并输出最小的K(1<=K<=N,不存在输出-1)满足以下两个条件:
①能够在原来的N个数中选出不重复(下标不重复)的K个数,使得这K个数的和在区间[L,R]内。
②能够在原来的N个数中选出不重复(下标不重复)的K个数,使得这K个数的和不在区间[L,R]内。
Solution
先排序,那么我们选择的就是连续的一段数。
Max{Ai}-Min{Ai}<=R-L这个说明如果现在有些数的和小于L,那么不管再加上哪个数的和不会大于R,后面要用到。
先看条件2,找出前缀和小于
L
的最后一个位置
那么很显然, k∈[1,p1] 和 k∈(n−p1,n] 都是满足条件的。
现在看条件1,找出后缀和大于等于
L
的第一个位置
根据开头的结论,
k∈[1,p4]
是满足小于等于
R
的,
于是和满足条件2的求交集即可。
Code
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define fo(i,j,k) for(int i=j;i<=k;i++)
#define fd(i,j,k) for(int i=j;i>=k;i--)
#define N 100010
#define ll long long
using namespace std;
ll a[N],qz[N],hz[N];
int n;
int lmax(ll x)
{
int l=0,r=n;
while(l+1<r)
{
int mid=(l+r)/2;
if(qz[mid]<x) l=mid;
else r=mid;
}
int q=l;
if(qz[r]<x) q=r;
return q;
}
int rmax(ll x)
{
int l=0,r=n;
while(l+1<r)
{
int mid=(l+r)/2;
if(hz[mid]>x) l=mid;
else r=mid;
}
int q=l;
if(hz[r]>x) q=r;
return q;
}
int hrmax(ll x)
{
int l=0,r=n;
while(l+1<r)
{
int mid=(l+r)/2;
if(hz[mid]>=x) l=mid;
else r=mid;
}
int q=l;
if(hz[r]>=x) q=r;
return q;
}
int qlmax(ll x)
{
int l=0,r=n;
while(l+1<r)
{
int mid=(l+r)/2;
if(qz[mid]<=x) l=mid;
else r=mid;
}
int q=l;
if(qz[r]<=x) q=r;
return q;
}
int main()
{
int m;
scanf("%d %d",&n,&m);
fo(i,1,n) scanf("%lld",&a[i]);
sort(a+1,a+n+1);
fo(i,1,n) qz[i]=qz[i-1]+a[i];
fd(i,n,1) hz[i]=hz[i+1]+a[i];
while(m--)
{
ll l,r;
scanf("%lld %lld",&l,&r);
int k1=lmax(l),k2=n-rmax(r)+1;
int k3=n-hrmax(l)+1,k4=qlmax(r);
if(k3<=k1) printf("%d\n",k3);
else if(k4>=k2) printf("%d\n",k2);
else printf("-1\n");
}
}