洛谷 P3307 [SDOI2013]项链 burnside引理+polya定理+莫比乌斯反演

题目描述
项链是人体的装饰品之一,是最早出现的首饰。项链除了具有装饰功能之外,有些项 链还具有特殊显示作用,如天主教徒的十字架链和佛教徒的念珠。

从古至今人们为了美化人体本身,也美 化环境,制造了各种不同风格,不同特点、不同式样的项链,满足了不同肤色、不同民族、不同审美观的人的审美需要。就材料而论,首饰市场上的项链有黄金、白银、珠宝等几种。

珍珠项链为珍珠制成的饰品,即将珍珠 钻孔后用线串在一起,佩戴于项间。天然珍珠项链具有一定的护养作用。 最近,铭铭迷恋上了一种项链。与其他珍珠项链基本上相同,不过这种项链的珠子却 与众不同,是正三菱柱的泰山石雕刻而成的。

三菱柱的侧面是正方形构成的,上面刻有数字。 能够让铭铭满意的项链必须满足下面的条件:

1:这串项链由n颗珠子构成的。

2:每一个珠子上面的数字x,必须满足0<x<=a,且珠子上面的数字的最大公约数要恰 好为1。两个珠子被认为是相同的,当且仅当他们经过旋转,或者翻转后能够变成一样的。

3:相邻的两个珠子必须不同。

4:两串项链如果能够经过旋转变成一样的,那么这两串项链就是相同的! 铭铭很好奇如果给定n和a,能够找到多少不同串项链。由于答案可能很大,所以对输 出的答案mod 1000000007。

输入输出格式

输入格式:
数据由多组数据构成: 第一行给定一个T<=10,代表由T组数据。 接下来T行,每行两个数n和a。

输出格式:
对于每组数据输出有多少不同的串。

输入输出样例

输入样例#1:
1
2 2
输出样例#1:
3
说明

对于100%的数据:所有的n<=1014,a<=107,T<=10;

样例解释:由三种珠子:[1,1,1],[1,1,2],[1,2,2].组成的串有:[1,2],[1,3],[2,3]。

分析:
我们先求出不同的珠子有多少个。相当于求有序三元组 ( x , y , z ) (x,y,z) (x,y,z)使得 g c d ( x , y , z ) = 1 gcd(x,y,z)=1 gcd(x,y,z)=1
我们考虑化成无序三元组。对于任意一个 ( x , y , z ) (x,y,z) (x,y,z)无序时会被算6次。而当有 x = y x=y x=y时,少算三次。当 x = y = z x=y=z x=y=z时,此时 x = y = z = 1 x=y=z=1 x=y=z=1,这个少算5次,但是有3次已经在 x = y x=y x=y算过,所欲只要加2次。
即,设 s 1 s_1 s1为无序三元组答案, s 2 s_2 s2为无序二元组方案,那么不同珠子数 m = 1 6 ∗ ( s 1 + 3 ∗ s 2 + 2 ) m=\frac{1}{6}*(s_1+3*s_2+2) m=61(s1+3s2+2)

考虑求 s 1 s_1 s1 s 2 s_2 s2,很套路的莫比乌斯反演一下就得到
s 1 = ∑ i = 1 a ⌊ a i ⌋ 3 ∗ μ ( i ) s_1=\sum_{i=1}^{a}\lfloor\frac{a}{i}\rfloor^3*\mu(i) s1=i=1aia3μ(i)
s 2 = ∑ i = 1 a ⌊ a i ⌋ 2 ∗ μ ( i ) s_2=\sum_{i=1}^{a}\lfloor\frac{a}{i}\rfloor^2*\mu(i) s2=i=1aia2μ(i)

考虑能拼出多少个项链。
可以考虑用burnside引理+polya定理。显然置换有 n n n个。分别是 ( 1 , 2 , 3 , . . . . n ) (1,2,3,....n) (1,2,3,....n) ( 2 , 3 , 4 , . . . , n , 1 ) , (2,3,4,...,n,1), (2,3,4,...,n,1),,…
考虑循环,假设第 i i i个置换是 1 1 1 i i i的那个,显然循环有 g c d ( n , i ) gcd(n,i) gcd(n,i)个,又因为这些循环是相连的,而循环中的取值相同。
我们设 f ( x ) f(x) f(x)为一个大小为 x x x的环,相邻两个颜色都不同的方案。那么第 i i i个置换的答案就是 f ( g c d ( n , i ) ) f(gcd(n,i)) f(gcd(n,i))
也就是 a n s = ∑ i = 1 n f ( g c d ( n , i ) ) ans=\sum_{i=1}^{n}f(gcd(n,i)) ans=i=1nf(gcd(n,i))
我们设 d = g c d ( n , i ) d=gcd(n,i) d=gcd(n,i),则 a n s = ∑ d ∣ n f ( d ) ∗ ∑ i = 1 n [ g c d ( n , i ) = d ] ans=\sum_{d|n}f(d)*\sum_{i=1}^{n}[gcd(n,i)=d] ans=dnf(d)i=1n[gcd(n,i)=d]
然后也就是 a n s = ∑ d ∣ n f ( d ) ∗ ϕ ( n / d ) ans=\sum_{d|n}f(d)*\phi(n/d) ans=dnf(d)ϕ(n/d)
f ( x ) = f ( x − 1 ) ∗ ( m − 2 ) + f ( x − 2 ) ∗ ( m − 1 ) f(x)=f(x-1)*(m-2)+f(x-2)*(m-1) f(x)=f(x1)(m2)+f(x2)(m1)
可以理解为在 x − 1 x-1 x1个环的任意一个位置,由于两边颜色不同,可以取 m − 2 m-2 m2种;或者在 x − 2 x-2 x2个环中放一个颜色相同的,再在两个相同颜色中放一个颜色不同的,有 m − 1 m-1 m1种情况。可以矩阵乘搞。

还有就是 n n n有可能是 m o d mod mod的倍数,所以上述运算要在 m o d 2 mod^2 mod2意义下跑。如果 n n n不是倍数,那么直接把算出来的答案模 m o d mod mod再乘逆元;否则把结果先除n,然后乘 n p \frac{n}{p} pn m o d mod mod意义下的值。

代码:

// luogu-judger-enable-o2
#include <iostream>
#include <cstdio>
#include <cmath>
#define LL long long

const LL p=1e9+7;
const LL mod=p*p;
const int maxn=1e7+7;
const LL inv6=833333345000000041;

using namespace std;

int T;
LL n,m,cnt,k,ans,num;
LL prime[maxn],mu[maxn],q[10007],a[10007];
bool not_prime[maxn];

LL mul(LL x,LL y)
{
    LL tmp=x*y-(LL)((long double)x*y/mod+0.1)*mod;
    if (tmp<0) tmp+=mod;
    return tmp;
}

void getmu(LL n)
{
    mu[1]=1;
    for (LL i=2;i<=n;i++)
    {
        if (!not_prime[i])
        {
            prime[++cnt]=i;
            mu[i]=-1;
        }
        for (LL j=1;j<=cnt;j++)
        {
            if (i*prime[j]>n) break;
            not_prime[i*prime[j]]=1;
            if (i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            else mu[i*prime[j]]=-mu[i];
        }
    }
    for (LL i=1;i<=n;i++) mu[i]+=mu[i-1];
}

LL power(LL x,LL y)
{
    if (!y) return 1;
    LL c=power(x,y/2);
    c=mul(c,c);
    if (y%2) c=mul(c,x);
    return c;
}

LL power1(LL x,LL y)
{
    if (!y) return 1;
    LL c=power1(x,y/2);
    c=(c*c)%p;
    if (y%2) c=(c*x)%p;
    return c;
}

void calc()
{
    LL s1=0,s2=0;
    for (int i=1,last;i<=m;i=last+1)
    {
        last=m/(m/i);
        s1=(s1+mul(power(m/i,3),(mu[last]+mod-mu[i-1])%mod))%mod;
        s2=(s2+mul(power(m/i,2),(mu[last]+mod-mu[i-1])%mod))%mod;
    }
    k=mul(inv6,((s1+mul(s2,3)+2)%mod));
}

LL F(LL x)
{
    LL tmp=power(k-1,x);
    if (x&1) tmp=(tmp+1+mod-k)%mod;
        else tmp=(tmp+k-1)%mod;
    return tmp;
}

void dfs(LL x,LL d,LL phi)
{
    if (x>num)
    {
        ans=(ans+mul(phi,F(n/d)))%mod;
        return;
    }
    dfs(x+1,d,phi);
    int s=1;
    for (int i=1;i<=q[x];i++)
    {
        d*=a[x];
        phi*=a[x]-s;
        s=0;
        dfs(x+1,d,phi);
    }
}

int main()
{
    scanf("%d",&T);
    getmu(1e7);		
    while (T--)
    {
        scanf("%lld%lld",&n,&m);
        calc();
        LL x=n;
        num=0;		
        for (int i=1;i<=cnt&&(prime[i]*prime[i]<=n);i++)
        {
            if (x%prime[i]==0)
            {
                a[++num]=prime[i];
                q[num]=0;
                while (x%prime[i]==0) q[num]++,x/=prime[i];
            }
        }
        if (x) a[++num]=x,q[num]=1;
        ans=0;
        dfs(1,1,1);
        if (n%p==0) ans=(ans/p)*power1(n/p,p-2)%p;
               else ans=(ans%p)*power1(n%p,p-2)%p;
        printf("%lld\n",ans);
    }
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值