一、知识点
1,换元法
换元法主要是根据“积分形式不变性”,通过“替换被积变量”的方式将“被积函数”转换为“积分表”中的函数及其组合,待求出原函数之后,再将变量替换回来的求积分的方法。
1)复合函数换元法(第一类换元法)
复合函数换元法主要是利用复合函数微分来进行“凑微分”,即将“微分符”外面的东西变到“微分符”里面。其关键点是要找到合适的中间变量 u=u(x) ,使得 :
∫f(x)dx=∫g(u)du=G(u)+C=G[u(x)]+C
例:
∫tan(x)dx=∫sin(x)cos(x)dx=−∫d[cos(x)]cos(x)=−ln|cos(x)|+C
2)反函数换元法(第二类换元法)
反函数换元法与复合函数换元法刚好相反,它需要做的是将“微分符”里面的东西变到“微分符”外面。其关键点是找到新变量t,使得 x=φ(t) ,积分过程如下:
∫f(x)dx=∫f[φ(t)]d[φ(t)]=∫f[φ(t)]∗φ′(t)dt=G[φ−1(x)]+C
最后又要用反函数将x替换回来
例:
∫1x2−a2−−−−−−√dx=?whena>