用Python学《微积分B》(换元法与分部积分)

本文介绍了使用Python进行微积分的学习,重点讲解了换元法(包括复合函数换元法和反函数换元法)和分部积分法。通过示例详细阐述了两种方法的应用,并提供了课后习题,如积分∫e^(-|x|)dx的求解。利用Python的sympy库,可以方便地进行符号计算和积分求解。
摘要由CSDN通过智能技术生成

一、知识点

1,换元法
  换元法主要是根据“积分形式不变性”,通过“替换被积变量”的方式将“被积函数”转换为“积分表”中的函数及其组合,待求出原函数之后,再将变量替换回来的求积分的方法。
1)复合函数换元法(第一类换元法)
  复合函数换元法主要是利用复合函数微分来进行“凑微分”,即将“微分符”外面的东西变到“微分符”里面。其关键点是要找到合适的中间变量 u=u(x) ,使得 :

f(x)dx=g(u)du=G(u)+C=G[u(x)]+C

例:
tan(x)dx=sin(x)cos(x)dx=d[cos(x)]cos(x)=ln|cos(x)|+C

2)反函数换元法(第二类换元法)
  反函数换元法与复合函数换元法刚好相反,它需要做的是将“微分符”里面的东西变到“微分符”外面。其关键点是找到新变量t,使得 x=φ(t) ,积分过程如下:
f(x)dx=f[φ(t)]d[φ(t)]=f[φ(t)]φ(t)dt=G[φ1(x)]+C

  最后又要用反函数将x替换回来
例:
1x2a2dx=?whena>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值