排序:
默认
按更新时间
按访问量

Some Basic and Inefficient Prime Number Generating Algorithms

转载一篇素数生成算法文章: https://en.wikibooks.org/wiki/Some_Basic_and_Inefficient_Prime_Number_Generating_Algorithms

2018-04-12 15:48:20

阅读数:258

评论数:0

单词接龙

  最近碰到了一个比较有意思的算法题 —— 单次接龙,我尝试做了一下,虽然能解,但是时间复杂度让我很不满意,于是google了网友的解法,找到一个比较满意的算法 —— 链接,作者是用JAVA实现的,我在此将它转换为C++实现。    问题描述   拉姆刚开始学习英文单词,对单词排序...

2018-03-28 17:06:51

阅读数:323

评论数:0

杨辉三角形生成器

《程序员的数学》通过“杨辉三角形”(Pascal’s Triangle)的演示了一种“从复杂问题中发现隐含递归结构”的方法:1)从整体中隐去部分问题;2)判断剩余部分是否和整体问题是同类问题。通过这种方法可以很好的解释“为什么杨辉三角形中会出现组合数”。   《程序员的数学》只是揭开了“杨辉三角...

2018-02-05 11:16:53

阅读数:397

评论数:0

从“汉诺塔”看递归算法

递归算法是《数据结构与算法》中最简洁的算法之一,它可以非常简明地描述“减而治之”(decrease and conquer)和“分而治之”(divide and conquer)这两种算法思想。递归算法虽然从代码角度来看非常简单,但对于新手理解起来却不那么简单。本文我将结合《数据结构与算法》的专业...

2018-02-01 14:21:56

阅读数:356

评论数:0

VirtualBox 扩展 ubuntu根目录磁盘大小

本文主要分享一种简单快速的扩展 virtualbox 虚拟机下 ubuntu 系统根目录磁盘大小的方法,也可以推广到 vm 虚拟机和windows client 系统。   整个过程可以分为两个大的步骤: - vboxmanager 扩展虚拟机磁盘(xxx.vid)大小 - gparted ...

2018-01-11 17:36:02

阅读数:701

评论数:0

2018,突破自我

2018年来了,零零后都要开始一批批跨越18岁,进入成年人的世界了。作为一个80后,在这新年上班的第一天,我必须得让自己保持“奋斗者”的状态,不断超越自己,不至于被这个时代落下。2017的技术收获  在开启新的“征程”之前,我需要先回顾一下上一年在技术上和学习上的收获和不足。整体来说,2017年我...

2018-01-02 17:31:02

阅读数:731

评论数:1

Django学习资源帖

本文分享一些比较优秀的Django学习资源链接,方便大家学习和查询。后续发现新的资源,将不断更新。 一、Django 官网   Django is a high-level Python Web framework that encourages rapid development...

2017-12-22 10:08:47

阅读数:2390

评论数:0

OpenWrt 开发 (二) 搭建开发环境

本文主要介绍如何搭建 OpenWrt 的开发环境,大部分资源都来自网络,你可以将它看成是一个资源整理帖,节省搜索时间。OpenWrt 开发环境的搭建大致分为以下几步: - 安装虚拟机 - 安装 Linux-ubuntu 系统 - 安装和检查编译环境 - 下载 OpenWrt 源码 ...

2017-12-18 15:19:05

阅读数:407

评论数:0

OpenWrt开发(一)序

最近接触了一个Linux嵌入式设备开发的项目——MESH网络设备开发。它是基于“OpenWrt”这个Linux发行版本进行开发,为此,我将在项目的开发过程,撰写一系列博客,记录学习的知识和开发要点。本文是这一系列博客的第一篇,主要分享项目开发中的各种学习资源链接,后续会持续更新。 ...

2017-12-18 10:38:06

阅读数:442

评论数:0

Pyinstaller打包matplotlib error总结

最近用python写了一个小程序,实现:读取txt或csv文件中的数据,按列将数据画成曲线图。原本很简单的一个程序(源码见文末),在打包时,由于包含了matplotlib,折腾了大半天才搞定,特此分享一下经验。1,pyinstaller打包  关于pyinstaller打包,除了pyinstall...

2017-11-06 15:04:25

阅读数:2376

评论数:2

用Python学《微积分B》(重积分)

重积分(Multiple Integral)是指不止一个积分变量的积分,其中 R2R^2 空间的积分称为二重积分,而 R3R^3 空间的积分称为三重积分。关于二重积分和三重积分,可以参考“Paul online math”,它对重积分的内容讲述的比较简单明了。 一、二重积分 1,二重积...

2017-11-03 14:34:50

阅读数:708

评论数:0

用Python学《微积分B》(多元微分学的几何应用)

多元函数微分学的几何应用主要是讲述空间向量与微分学的融合,包括:空间曲线的切线和空间曲面的切平面。如果将本文和之前的“空间向量”一文结合起来看,你会发现多元函数微分学与空间向量结合后的神奇。 一、空间曲线的切线 1,空间曲线的参数方程   在“空间向量”一文中提到:空间曲线可以看作是...

2017-11-01 13:23:37

阅读数:381

评论数:0

Qt资源帖

1,官网 https://www.qt.io/2,开发者文档 http://doc.qt.io/3,官方demo解析 https://www.kancloud.cn/cloudcastle/qt5-demo/109863

2017-11-01 08:56:23

阅读数:278

评论数:0

用Python学《微积分B》(多元函数Taylor公式)

从一元微分到多元微分,主要把握这两点差异:一是导数变偏导数,二是叠加。从向量的角度来看,更容易理解:导数(偏导数)表征的是变化率,一元函数导数表示的是一个维度上的变化率,而多元函数导数表示的多个维度变化率,它等于各个分量(维度)上的变化率(偏导数)的叠加。循着这个原则,我们来看一下多元函数的Tay...

2017-10-31 09:03:37

阅读数:603

评论数:0

梯度向量与梯度下降法

最近非常热门的“深度学习”领域,用到了一种名为“梯度下降法”的算法。梯度下降法是机器学习中常用的一种方法,它主要用于快速找到“最小误差”(the minimum error)。要掌握“梯度下降法”,就需要先搞清楚什么是“梯度”,本文将从这些基本概念:方向导数(directional derivat...

2017-10-27 15:37:16

阅读数:930

评论数:0

用Python学《微积分B》(微分法)

本节主要介绍多元函数导数(微分)的计算方法,包括:多元复合函数求导法则、多元隐函数求导、多元隐函数组求导三个子话题。 一、多元复合函数链导法 1,一元复合函数“链导法”   回顾一下,一元复合函数求导的方法 —— “链导法”(chain rule): y=f(u),u=g(x)⇒dyd...

2017-10-25 15:29:03

阅读数:553

评论数:0

用Python学《微积分B》(多元函数的微分)

多元函数的微分包括“偏导数”和“全微分”,而“全微分”在满足一定条件时,通过“偏导数”的叠加来表示。这种叠加可以让人联想到“空间向量”与“直角坐标系”的各个分量之间的叠加。   偏导数(Partial Derivative)内容相对简单,主要包括:偏导数与全微分(全导数-total deriva...

2017-10-24 11:04:03

阅读数:739

评论数:0

用Python学《微积分B》(多元函数的极限)

先回顾一下“一元微分学”部分的知识链:数轴 -> 数列 -> 数列的收敛 -> (不等式)数列的极限 -> 一元函数的极限 -> 一元函数的连续性 -> 一致连续 -> 导数 -> 微分。   从上面的链条可以看出:数列是一维空间(数轴)的、离散的...

2017-10-23 13:30:28

阅读数:630

评论数:0

用Python学《微积分B》(空间向量)

Math is fun对向量(vector)及其运算讲解的非常形象易懂 ,轻松的扫完这篇文章及其相关链接,对于向量也就了然于心啦。 一、向量 1,向量的定义和性质   1)幅度(模)- magnitutide   2)方向(方向角)- direction   3)方向角与方向余弦...

2017-10-17 09:45:33

阅读数:389

评论数:0

用Python学《微积分B》(微分方程)

什么是微分方程(Differential Equation)?微分方程有什么用?如何解微分方程?这是本节需要重点理解的问题。 一、微分方程简介   除了wiki,在math is fun上搜索“differential equation”,可以找到几个关于“微分方程”的话题。这些话题对...

2017-10-12 10:57:48

阅读数:592

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭