用Python学《微积分B》(反常积分)

本文介绍了如何使用Python辅助理解并解决微积分中的反常积分问题,包括无穷积分和瑕积分。通过具体例题和练习,展示了如何运用Python进行计算,并讨论了积分的敛散性和比阶判别法。
摘要由CSDN通过智能技术生成


  Riemann积分有两个局限:一是积分区间[a, b]必须有限;二是被积函数f(x)在积分区间[a, b]上有界。而反常积分(Improper Integral)就是对Riemann积分这两个局限的扩展,前者扩展后被称为“无穷积分”,后者扩展后被称为“瑕积分”。
  本节的内容属于“微积分的扩展”,课程中介绍的本就不太详细,主要讨论反常积分的“敛散性”我就不作扩展了,仅用Python辅助,展示课后练习和单元测试的解答。

#Exercise 7-7-1
from sympy import *
init_printing()
x = Symbol('x')
f = 1 / (1 + E ** x) ** 2
f, integrate(f, (x, 0, +oo))

(1(ex+1)2,12+log(2))

#Exercise 7-7-2
x = Symbol('x')
f = 1 / (x ** 2 + 4 * x + 9)
f, integrate(f, (x, -oo, +oo))

(1x2+4x+9,5π5)

#Exercise 7-7-3
x = Symbol('x')
f = log(x) / (1 + x) ** 2
f, integrate(f, (x, 0, +oo))

(log(x)(x+1)2,0)

#Exercise 7-7-4
x = Symbol('x')
f = 1 / sqrt(abs((1 - x)))
f1 = 1 / sqrt(1 - x)
f2 = 1 / sqrt(x - 1)
f, integrate(f1, (x, 0, 1)),  integrate(f2, (x, 1, 2))

(1|x1|,2,2)

#Exercise 7-7-4
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
#x = np.array(filter(lambda t:t != 1, np.linspace(0, 2))).flatten()
x = np.linspace(0, 2)
t = np.asarray([1]).repeat(x.size)
y = 1 / np.sqrt(np.abs((t - x)))
plt.plot(x,y)
plt.show()


这里写图片描述

Exercise 7-7-5

10x1xdx=?

解:本题直接用sympy计算不出来,观察它的被积函数,其中含有2次根号,很容易相等“三角函数平方和/差公式”,令 x=sin2(t) ,得:
10x1xdx=π20tan(t)d[sin2(t)]=2π20sin2(t)dt

#Exercise 7-7-3
x = Symbol('x')
f = sin(x) ** 2
2 * integrate(f, (x, 0, pi / 2))


π2


Exercise 7-7-6
+0dx(x+1)x2+1=?

解:同样地,用三角函数换元法
+0dx(x+1)x2+1=π20cos2(t)d[tan(t)]sin(t)+cos(t)=π20dtsin(t)+cos(t)=π20dt2sin(t+π4)


#Exercise 7-7-6
x = Symbol('x')
f = 1 / (sqrt(2) * sin(x + pi / 4))
integrate(f, (x, 0, pi / 2))

22log(2(22+1))22log(2(22+1))

Exercise 7-7-1b

+2dxxlnp(x)

若上式收敛,求p的范围
解:运用“比阶判别法的极限形式”
limx+xqf(x)=limx+xq1lnp(x)

要是这个极限存在,则 pq1>11=0

Exercise 7-7-2b

+2dxx+x2+2

解:先看被积函数的性质
f(x)=1x+x2+2=12(x2+2x)

f(x)=12(xx2+21)=xx2+22x2+2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值