用Python学《微积分B》(多元函数Taylor公式)

从一元微分到多元微分,主要把握这两点差异:一是导数变偏导数,二是叠加。从向量的角度来看,更容易理解:导数(偏导数)表征的是变化率,一元函数导数表示的是一个维度上的变化率,而多元函数导数表示的多个维度变化率,它等于各个分量(维度)上的变化率(偏导数)的叠加。循着这个原则,我们来看一下多元函数的Taylor公式展开。 一、Taylor’s theorem in 1D   先来回顾一下一元函数
摘要由CSDN通过智能技术生成


  从一元微分到多元微分,主要把握这两点差异:一是导数变偏导数,二是叠加。从向量的角度来看,更容易理解:导数(偏导数)表征的是变化率,一元函数导数表示的是一个维度上的变化率,而多元函数导数表示的多个维度变化率,它等于各个分量(维度)上的变化率(偏导数)的叠加。循着这个原则,我们来看一下多元函数的Taylor公式展开


一、Taylor’s theorem in 1D


  先来回顾一下一元函数的Taylor公式(wiki - Taylor’s theorem
1,Taylor级数

f(a)+f(a)1!(xa)+f′′(a)2!(xa)2+f′′′(a)3!(xa)3+

也可以记为
n=0f(n)(a)n!(xa)n

注:math is fun - Taylor series对Taylor级数也有简单有趣的介绍。
2,Taylor展开
f(x)=f(a)+f(a)1!(xa)+f′′(a)2!(xa)2+f′′′(a)3!(xa)3++f(k)(a)k!(xa)k+o[(xa)k]

  这个就是Peano余项形式的Taylor展开式,它应用的是小o标记法。这个公式的核心思想是:“任意 n 阶可导函数”都可以展开为它在 x=a 处的导数为系数的 n+1 次多项式。
  注意两点:一是用多项式近似函数;二是前提条件—— “ n 阶可导”。


二、Taylor’s theorem in 2D


1,定理(Lagrange余项Taylor公式)
  设函数 f(x,y) 在点 (a,b) 的某个邻域内具有 n+1 阶连续偏导数,当 (a+Δx,b+Δy) 在此邻域内时,则有

f(a+Δx,b+Δy)=k=0n1k![Δxx+Δyy]kf(a,b)+1(n+1)![Δxx+Δyy]n+1f(a+θΔx,b+θΔy)

  这就是二元函数的Taylor公式,其中 0<θ<1 ,前一部分是和式,后一部分是Lagrange余项。
2,简单推导
  下面我从一元函数的Taylor公式和多元函数链导法来推导二元函数的Taylor公式,其中用到函数构造法。可以参考wiki-Taylor’s theorem
一元函数Taylor公式如下
f(a+Δx)=f(a)+f(a)Δx+12f′′(a)(Δx)2++1n!f(n)(a)(Δx)n
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值