【最佳实践】半监督学习中对有监督数据集和无监督数据集的采样问题

对于少量的有监督数据集和大量的无监督数据集,只用zip的话,那么取完有监督数据集后剩下的无监督数据集就浪费了,这个时候可以使用python内置的itertools,将其中的小部分变成循环采样:

from itertools import cycle
for idx, (sup_data, un_data) in enumerate(zip(cycle(sup_dataloader), unsup_dataloader)):
    (imgs, labels) = sup_data[0].to(device), sup_data[1].to(device)
    (uimgs, ulabels) = un_data[0].to(device), None
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值