C++计算【4】

正割法

数学原理

  • 一种用于求非线性方程 f ( x ) = 0 f(x) = 0 f(x)=0 的数值解的迭代方法
  • 相比牛顿迭代法,省去了计算 导数的功夫,使用求导近似方法,这就是正割法
  • 使用两个初始猜测点 x 0 x_0 x0 x 1 x_1 x1 来估计根,初始点可以根据二分法求得。
  • 以下公式生成后续近似值:
    x n + 1 = x n − f ( x n ) ⋅ x n − x n − 1 f ( x n ) − f ( x n − 1 ) x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} xn+1=xnf(xn)f(xn)f(xn1)x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逻辑君的外语手册

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值